In this paper, a solar air heater (SAH) with phase change material (PCM)-based energy storage is investigated. Paraffin was placed underneath the absorber plate as the PCM. A transient two-dimensional laminar model was used in the Ansys Fluent 17 software to study the effects of different parameters on the performance of the SAH, such as the air mass flow rate, the amount of paraffin, and the thermal conductivity of the paraffin. The performance of the SAH was optimized by considering two objectives simultaneously: thermal energy efficiency and maximum nocturnal temperature difference between the inlet and the outlet of the SAH. To validate the numerical model, a SAH with a 2-cm paraffin layer and the same dimensions as the numerical model was built and tested. The results of the simulation showed good agreement with the experimental results.
Optimization of a solar air heater with phase change materials: Experimental and numerical study / Moradi, Ramin; Kianifar, A; Wongwises, S. - In: EXPERIMENTAL THERMAL AND FLUID SCIENCE. - ISSN 0894-1777. - 89:(2017), pp. 41-49. [10.1016/j.expthermflusci.2017.07.011]
Optimization of a solar air heater with phase change materials: Experimental and numerical study
Moradi R,Writing – Original Draft Preparation
;
2017
Abstract
In this paper, a solar air heater (SAH) with phase change material (PCM)-based energy storage is investigated. Paraffin was placed underneath the absorber plate as the PCM. A transient two-dimensional laminar model was used in the Ansys Fluent 17 software to study the effects of different parameters on the performance of the SAH, such as the air mass flow rate, the amount of paraffin, and the thermal conductivity of the paraffin. The performance of the SAH was optimized by considering two objectives simultaneously: thermal energy efficiency and maximum nocturnal temperature difference between the inlet and the outlet of the SAH. To validate the numerical model, a SAH with a 2-cm paraffin layer and the same dimensions as the numerical model was built and tested. The results of the simulation showed good agreement with the experimental results.File | Dimensione | Formato | |
---|---|---|---|
Moradi_solar-air-heater_2017.pdf
Open Access dal 01/01/2020
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.