The formalism for describing a metric and the corresponding scalar in terms of multipole moments has recently been developed for scalar-tensor theories. We take advantage of this formalism in order to obtain expressions for the observables that characterize geodesics in terms of the moments. These expressions provide some insight into how the structure of a scalarized compact object affects observables. They can also be used to understand how deviations from general relativity are imprinted on the observables.

Geodesic properties in terms of multipole moments in scalar-tensor theories of gravity / Pappas, Georgios; Sotiriou, Thomas P.. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 453:3(2015), pp. 2862-2876. [10.1093/mnras/stv1819]

Geodesic properties in terms of multipole moments in scalar-tensor theories of gravity

Pappas, Georgios;
2015

Abstract

The formalism for describing a metric and the corresponding scalar in terms of multipole moments has recently been developed for scalar-tensor theories. We take advantage of this formalism in order to obtain expressions for the observables that characterize geodesics in terms of the moments. These expressions provide some insight into how the structure of a scalarized compact object affects observables. They can also be used to understand how deviations from general relativity are imprinted on the observables.
Gravitation; Methods: analytical; Relativistic processes; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science
01 Pubblicazione su rivista::01a Articolo in rivista
Geodesic properties in terms of multipole moments in scalar-tensor theories of gravity / Pappas, Georgios; Sotiriou, Thomas P.. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 453:3(2015), pp. 2862-2876. [10.1093/mnras/stv1819]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1122416
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact