Hexagonal Boron Nitride (hBN) is a layered van der Waals material able to sustain hyperbolic phonon-polaritons within its mid-infrared reststrahlen bands. We study the effect of a metallic substrate adjacent to hBN flakes on the polariton dispersion and on the standing wave patterns in nanostructures by means of mid-infrared nanospectroscopy and nanoimaging. We exploit the gold-coated tip apex for atomic force microscopy to launch polaritons in thin hBN flakes. The photo-thermal induced mechanical resonance is used to detect the amplitude profile of polariton standing waves with a lateral resolution of 30 nm. We observe the polariton excitation spectra on hBN flakes as thin as 4 nm, thanks to the infrared field enhancement in the nanogap between the gold-coated tip apex and an ultraflat gold substrate. The data indicate no major effect of remote screening of the free electrons in gold on the phonon-polariton excitation that appears robust also against geometrical imperfections.
Observation of phonon-polaritons in thin flakes of hexagonal boron nitride on gold / Ciano, C.; Giliberti, V.; Ortolani, M.; Baldassarre, L.. - In: APPLIED PHYSICS LETTERS. - ISSN 0003-6951. - ELETTRONICO. - 112:15(2018), p. 153101. [10.1063/1.5024518]
Observation of phonon-polaritons in thin flakes of hexagonal boron nitride on gold
Ciano, C.
;Giliberti, V.
;Ortolani, M.
;Baldassarre, L.
2018
Abstract
Hexagonal Boron Nitride (hBN) is a layered van der Waals material able to sustain hyperbolic phonon-polaritons within its mid-infrared reststrahlen bands. We study the effect of a metallic substrate adjacent to hBN flakes on the polariton dispersion and on the standing wave patterns in nanostructures by means of mid-infrared nanospectroscopy and nanoimaging. We exploit the gold-coated tip apex for atomic force microscopy to launch polaritons in thin hBN flakes. The photo-thermal induced mechanical resonance is used to detect the amplitude profile of polariton standing waves with a lateral resolution of 30 nm. We observe the polariton excitation spectra on hBN flakes as thin as 4 nm, thanks to the infrared field enhancement in the nanogap between the gold-coated tip apex and an ultraflat gold substrate. The data indicate no major effect of remote screening of the free electrons in gold on the phonon-polariton excitation that appears robust also against geometrical imperfections.File | Dimensione | Formato | |
---|---|---|---|
Ciano_Observation_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.