Based on aerosol measurements carried out in a test room, particle regional respiratory doses have been estimated for both combustion and non-combustion aerosol sources currently encountered in domestic environments. The general population chronically receives doses that, pooled together, are well above those due to urban outdoor pollution. At the end of each source operation, from 75% to 99% and from 27% to 93% of these doses are due to ultrafine particle, respectively on particle number and surface area metrics. Depending on the source, the pattern of exposure may be, for very short time laps, very intense (up to 8.0 × 109particles s−1) and involve a fraction of particles with mode at about 10 nm. For appliance operated by brush electric motors, this mode is the major one and is due to the generation of copper nanoparticles. The health relevance of such particles deserves particular attention due to their possible translocation to the brain and in the light of the associations between copper ions and Alzheimer's disease, proposed by several studies.

Ultrafine particles in domestic environments: regional doses deposited in the human respiratory system / Manigrasso, Maurizio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale. - In: ENVIRONMENT INTERNATIONAL. - ISSN 0160-4120. - STAMPA. - 118:(2018), pp. 134-145. [10.1016/j.envint.2018.05.049]

Ultrafine particles in domestic environments: regional doses deposited in the human respiratory system

Vitali, Matteo;Protano, Carmela;
2018

Abstract

Based on aerosol measurements carried out in a test room, particle regional respiratory doses have been estimated for both combustion and non-combustion aerosol sources currently encountered in domestic environments. The general population chronically receives doses that, pooled together, are well above those due to urban outdoor pollution. At the end of each source operation, from 75% to 99% and from 27% to 93% of these doses are due to ultrafine particle, respectively on particle number and surface area metrics. Depending on the source, the pattern of exposure may be, for very short time laps, very intense (up to 8.0 × 109particles s−1) and involve a fraction of particles with mode at about 10 nm. For appliance operated by brush electric motors, this mode is the major one and is due to the generation of copper nanoparticles. The health relevance of such particles deserves particular attention due to their possible translocation to the brain and in the light of the associations between copper ions and Alzheimer's disease, proposed by several studies.
2018
Brush electric motors; chronic exposure; combustion; indoor; MPPD; respiratory doses; ultrafine particles; 2300
01 Pubblicazione su rivista::01a Articolo in rivista
Ultrafine particles in domestic environments: regional doses deposited in the human respiratory system / Manigrasso, Maurizio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale. - In: ENVIRONMENT INTERNATIONAL. - ISSN 0160-4120. - STAMPA. - 118:(2018), pp. 134-145. [10.1016/j.envint.2018.05.049]
File allegati a questo prodotto
File Dimensione Formato  
Manigrasso_Ultrafine_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1120132
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact