In this paper we introduce a novel algorithmic framework for non-convex distributed optimization in multi-agent networks with time-varying (nonsymmetric) topology. The proposed method hinges on successive convex approximation (SCA) techniques while leveraging dynamic consensus as a mechanism to diffuse information: each agent first solves (possibly inexactly) a local convex approximation of the nonconvex original problem, and then performs local averaging operations. Asymptotic convergence to (stationary) solutions of the nonconvex problem is established. Finally, the framework is applied to a distributed nonlinear regression problem.

Distributed nonconvex optimization over time-varying networks / Di Lorenzo, P.; Scutari, G.. - (2016), pp. 4124-4128. (Intervento presentato al convegno IEEE International Conference on Acoustics, Speech, and Signal Processing tenutosi a Shanghai) [10.1109/ICASSP.2016.7472453].

Distributed nonconvex optimization over time-varying networks

Di Lorenzo P.;
2016

Abstract

In this paper we introduce a novel algorithmic framework for non-convex distributed optimization in multi-agent networks with time-varying (nonsymmetric) topology. The proposed method hinges on successive convex approximation (SCA) techniques while leveraging dynamic consensus as a mechanism to diffuse information: each agent first solves (possibly inexactly) a local convex approximation of the nonconvex original problem, and then performs local averaging operations. Asymptotic convergence to (stationary) solutions of the nonconvex problem is established. Finally, the framework is applied to a distributed nonlinear regression problem.
2016
IEEE International Conference on Acoustics, Speech, and Signal Processing
Nonconvex optimization; networks
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Distributed nonconvex optimization over time-varying networks / Di Lorenzo, P.; Scutari, G.. - (2016), pp. 4124-4128. (Intervento presentato al convegno IEEE International Conference on Acoustics, Speech, and Signal Processing tenutosi a Shanghai) [10.1109/ICASSP.2016.7472453].
File allegati a questo prodotto
File Dimensione Formato  
DiLorenzo_Distributed-nonconvex__2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 157.99 kB
Formato Adobe PDF
157.99 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1119372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
social impact