The solution of linear inverse problems when the unknown parameters outnumber data requires addressing the problem of a nontrivial null space. After restating the problem within the Bayesian framework, a priori information about the unknown can be utilized for determining the null space contribution to the solution. More specifically, if the solution of the associated linear system is computed by the conjugate gradient for least squares (CGLS) method, the additional information can be encoded in the form of a right preconditioner. In this paper we study how the right preconditioner changes the Krylov subspaces where the CGLS iterates live, and we draw a tighter connection between Bayesian inference and Krylov subspace methods. The advantages of a Bayes-meets-Krylov approach to the solution of underdetermined linear inverse problems is illustrated with computed examples.

Bayes meets krylov: Statistically inspired preconditioners for CGLS / Calvetti, D.; Pitolli, F.; Somersalo, E.; Vantaggi, B.. - In: SIAM REVIEW. - ISSN 0036-1445. - STAMPA. - 60:2(2018), pp. 429-461. [10.1137/15M1055061]

Bayes meets krylov: Statistically inspired preconditioners for CGLS

Pitolli, F.;Vantaggi, B.
2018

Abstract

The solution of linear inverse problems when the unknown parameters outnumber data requires addressing the problem of a nontrivial null space. After restating the problem within the Bayesian framework, a priori information about the unknown can be utilized for determining the null space contribution to the solution. More specifically, if the solution of the associated linear system is computed by the conjugate gradient for least squares (CGLS) method, the additional information can be encoded in the form of a right preconditioner. In this paper we study how the right preconditioner changes the Krylov subspaces where the CGLS iterates live, and we draw a tighter connection between Bayesian inference and Krylov subspace methods. The advantages of a Bayes-meets-Krylov approach to the solution of underdetermined linear inverse problems is illustrated with computed examples.
2018
Bayesian inverse problems; Effective null space; Iterative linear solvers; Termination criterion; Underdetermined linear system;
01 Pubblicazione su rivista::01a Articolo in rivista
Bayes meets krylov: Statistically inspired preconditioners for CGLS / Calvetti, D.; Pitolli, F.; Somersalo, E.; Vantaggi, B.. - In: SIAM REVIEW. - ISSN 0036-1445. - STAMPA. - 60:2(2018), pp. 429-461. [10.1137/15M1055061]
File allegati a questo prodotto
File Dimensione Formato  
SIAM2018.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 5.13 MB
Formato Adobe PDF
5.13 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1118430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 22
social impact