Down Syndrome (DS) is the most common genetic form of intellectual disability that leads in the majority of cases to development of early-onset Alzheimer-like dementia (AD). The neuropathology of DS has several common features with AD including alteration of redox homeostasis, mitochondrial deficits, and inflammation among others. Interestingly, some of the genes encoded by chromosome 21 are responsible of increased oxidative stress (OS) conditions that are further exacerbated by decreased antioxidant defense. Previous studies from our groups showed that accumulation of oxidative damage is an early event in DS neurodegeneration and that oxidative modifications of selected proteins affects the integrity of the protein degradative systems, antioxidant response, neuronal integrity and energy metabolism. In particular, the current review elaborates recent findings demonstrating the accumulation of oxidative damage in DS and we focus attention on specific deregulation of iron metabolism, which affects both the central nervous system and the periphery. Iron dysmetabolism is a well-recognized factor that contributes to neurodegeneration; thus we opine that better understanding how and to what extent the concerted loss of iron dyshomeostasis and increased OS occur in DS could provide novel insights for the development of therapeutic strategies for the treatment of Alzheimer-like dementia.

Disturbance of redox homeostasis in down syndrome: role of iron dysmetabolism / Barone, Eugenio; Arena, Andrea; Head, Elizabeth; Butterfield, D. Allan; Perluigi, Marzia. - In: FREE RADICAL BIOLOGY & MEDICINE. - ISSN 0891-5849. - STAMPA. - 114(2018), pp. 84-93. [10.1016/j.freeradbiomed.2017.07.009]

Disturbance of redox homeostasis in down syndrome: role of iron dysmetabolism

Barone, Eugenio
Membro del Collaboration Group
;
Arena, Andrea
Membro del Collaboration Group
;
Perluigi, Marzia
Membro del Collaboration Group
2018

Abstract

Down Syndrome (DS) is the most common genetic form of intellectual disability that leads in the majority of cases to development of early-onset Alzheimer-like dementia (AD). The neuropathology of DS has several common features with AD including alteration of redox homeostasis, mitochondrial deficits, and inflammation among others. Interestingly, some of the genes encoded by chromosome 21 are responsible of increased oxidative stress (OS) conditions that are further exacerbated by decreased antioxidant defense. Previous studies from our groups showed that accumulation of oxidative damage is an early event in DS neurodegeneration and that oxidative modifications of selected proteins affects the integrity of the protein degradative systems, antioxidant response, neuronal integrity and energy metabolism. In particular, the current review elaborates recent findings demonstrating the accumulation of oxidative damage in DS and we focus attention on specific deregulation of iron metabolism, which affects both the central nervous system and the periphery. Iron dysmetabolism is a well-recognized factor that contributes to neurodegeneration; thus we opine that better understanding how and to what extent the concerted loss of iron dyshomeostasis and increased OS occur in DS could provide novel insights for the development of therapeutic strategies for the treatment of Alzheimer-like dementia.
File allegati a questo prodotto
File Dimensione Formato  
Barone_Disturbance_2018

solo gestori archivio

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 543.6 kB
Formato Adobe PDF
543.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/1118370
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
social impact