We prove that there exist exactly three non-equivalent symplectic semifield spreads of PG ( 5 , q2), for q2> 2 .38odd, whose associated semifield has center containing Fq. Equivalently, we classify, up to isotopy, commutative semifields of order q6, for q2> 2 .38odd, with middle nucleus containing q2Fq2and center containing q Fq.
On symplectic semifield spreads of PG(5,q2), q odd / Marino, Giuseppe; Pepe, Valentina. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - 30:2(2018), pp. 497-512. [10.1515/forum-2016-0133]
On symplectic semifield spreads of PG(5,q2), q odd
Pepe, Valentina
2018
Abstract
We prove that there exist exactly three non-equivalent symplectic semifield spreads of PG ( 5 , q2), for q2> 2 .38odd, whose associated semifield has center containing Fq. Equivalently, we classify, up to isotopy, commutative semifields of order q6, for q2> 2 .38odd, with middle nucleus containing q2Fq2and center containing q Fq.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
SympSpreads-submitted.pdf
accesso aperto
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
359.73 kB
Formato
Adobe PDF
|
359.73 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.