We prove that there exist exactly three non-equivalent symplectic semifield spreads of PG ( 5 , q2), for q2> 2 .38odd, whose associated semifield has center containing Fq. Equivalently, we classify, up to isotopy, commutative semifields of order q6, for q2> 2 .38odd, with middle nucleus containing q2Fq2and center containing q Fq.

On symplectic semifield spreads of PG(5,q2), q odd / Marino, Giuseppe; Pepe, Valentina. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - 30:2(2018), pp. 497-512. [10.1515/forum-2016-0133]

On symplectic semifield spreads of PG(5,q2), q odd

Pepe, Valentina
2018

Abstract

We prove that there exist exactly three non-equivalent symplectic semifield spreads of PG ( 5 , q2), for q2> 2 .38odd, whose associated semifield has center containing Fq. Equivalently, we classify, up to isotopy, commutative semifields of order q6, for q2> 2 .38odd, with middle nucleus containing q2Fq2and center containing q Fq.
2018
Commutative semifeld; Symplectic semifeld spread; Veronese variety; Mathematics (all); Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
On symplectic semifield spreads of PG(5,q2), q odd / Marino, Giuseppe; Pepe, Valentina. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - 30:2(2018), pp. 497-512. [10.1515/forum-2016-0133]
File allegati a questo prodotto
File Dimensione Formato  
SympSpreads-submitted.pdf

accesso aperto

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 359.73 kB
Formato Adobe PDF
359.73 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1118329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact