We provide new elementary proofs of the following two results: every complex variety is locally the graphs of a Dir-minimizing function, first proved by Almgren; the gradients of Dir-minimizing functions, in principle square-summable, are p-integrable for some p > 2, proved by De Lellis and the author. In the planar case, we prove that our integrability exponents are optimal.
Complex varieties and higher integrability of Dir-minimizing Q-valued functions / Spadaro, E. N.. - In: MANUSCRIPTA MATHEMATICA. - ISSN 0025-2611. - 132:3(2010), pp. 415-429. [10.1007/s00229-010-0353-5]
Complex varieties and higher integrability of Dir-minimizing Q-valued functions
Spadaro, E. N.
2010
Abstract
We provide new elementary proofs of the following two results: every complex variety is locally the graphs of a Dir-minimizing function, first proved by Almgren; the gradients of Dir-minimizing functions, in principle square-summable, are p-integrable for some p > 2, proved by De Lellis and the author. In the planar case, we prove that our integrability exponents are optimal.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Spadaro_Complex-varieties_2010.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
212.3 kB
Formato
Adobe PDF
|
212.3 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.