Let Dh, Ek and Falpha be sets of size h; k; alpha respectively, with k less than or equal to h. A permutation of the union of Dh, Ek and Falpha such that the elements of Dh are not fixed and the elements of Ek cannot occupy a site originally occupied by an object of the same type or by an object of Falpha will be called a strongly widened derangement. We show a connection between strongly widened derangements and generalized Laguerre polynomials that provides a generalization, for integer values of alpha, of Even and Gillis (1976) different from the one presented in Foata and Zeilberger (1988)..
Widened derangements and generalized Laguerre polynomials / Capparelli, Stefano; DEL FRA, Alberto; Pepe, Valentina. - In: RAMANUJAN JOURNAL. - ISSN 1382-4090. - STAMPA. - 49:(2019), pp. 269-286. [10.1007/s11139-018-0019-6]
Widened derangements and generalized Laguerre polynomials
Stefano Capparelli;Alberto Del Fra;Valentina Pepe
2019
Abstract
Let Dh, Ek and Falpha be sets of size h; k; alpha respectively, with k less than or equal to h. A permutation of the union of Dh, Ek and Falpha such that the elements of Dh are not fixed and the elements of Ek cannot occupy a site originally occupied by an object of the same type or by an object of Falpha will be called a strongly widened derangement. We show a connection between strongly widened derangements and generalized Laguerre polynomials that provides a generalization, for integer values of alpha, of Even and Gillis (1976) different from the one presented in Foata and Zeilberger (1988)..File | Dimensione | Formato | |
---|---|---|---|
CDP_accepted.pdf
solo gestori archivio
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
276.51 kB
Formato
Adobe PDF
|
276.51 kB | Adobe PDF | Contatta l'autore |
10.1007_s11139-018-0019-6.pdf
solo gestori archivio
Note: https://link.springer.com/article/10.1007%2Fs11139-018-0019-6
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
699.69 kB
Formato
Adobe PDF
|
699.69 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.