We prove several results on Almgren's multiple valued functions and their links to integral currents. In particular, we give a simple proof of the fact that a Lipschitz multiple valued map naturally defines an integer rectifiable current; we derive explicit formulae for the boundary, the mass and the first variations along certain specific vector-fields; and exploit this connection to derive a delicate reparametrization property for multiple valued functions. These results play a crucial role in our new proof of the partial regularity of area minimizing currents.
Multiple valued functions and integral currents / DE LELLIS, Camillo; Spadaro, EMANUELE NUNZIO. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 0391-173X. - 14:4(2015), pp. 1239-1269. [10.2422/2036-2145.201306_002]
Multiple valued functions and integral currents
Camillo De Lellis;Emanuele Spadaro.
2015
Abstract
We prove several results on Almgren's multiple valued functions and their links to integral currents. In particular, we give a simple proof of the fact that a Lipschitz multiple valued map naturally defines an integer rectifiable current; we derive explicit formulae for the boundary, the mass and the first variations along certain specific vector-fields; and exploit this connection to derive a delicate reparametrization property for multiple valued functions. These results play a crucial role in our new proof of the partial regularity of area minimizing currents.File | Dimensione | Formato | |
---|---|---|---|
DeLellis_Multiple-valued-functions_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
783.17 kB
Formato
Adobe PDF
|
783.17 kB | Adobe PDF | Contatta l'autore |
DeLellis_postprint_Multiple-valued-functions_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
299.69 kB
Formato
Adobe PDF
|
299.69 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.