In this note we prove an abstract version of a recent quantitative stratifcation priciple introduced by Cheeger and Naber (Invent. Math., 191 (2013), no. 2, 321-339; Comm. Pure Appl. Math., 66 (2013), no. 6, 965-990). Using this general regularity result paired with an ε-regularity theorem we provide a new estimate of the Minkowski dimension of the set of higher multiplicity points of a Dir-minimizing Q-valued function. The abstract priciple is applicable to several other problems: we recover recent results in the literature and we obtain also some improvements in more classical contexts.
Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result / Focardi, Matteo; Marchese, Andrea; Spadaro, EMANUELE NUNZIO. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 268:11(2015), pp. 3290-3325. [10.1016/j.jfa.2015.02.011]
Improved estimate of the singular set of Dir-minimizing Q-valued functions via an abstract regularity result
Emanuele Spadaro
2015
Abstract
In this note we prove an abstract version of a recent quantitative stratifcation priciple introduced by Cheeger and Naber (Invent. Math., 191 (2013), no. 2, 321-339; Comm. Pure Appl. Math., 66 (2013), no. 6, 965-990). Using this general regularity result paired with an ε-regularity theorem we provide a new estimate of the Minkowski dimension of the set of higher multiplicity points of a Dir-minimizing Q-valued function. The abstract priciple is applicable to several other problems: we recover recent results in the literature and we obtain also some improvements in more classical contexts.File | Dimensione | Formato | |
---|---|---|---|
Focardi_Improved-estimate_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
610.62 kB
Formato
Adobe PDF
|
610.62 kB | Adobe PDF | Contatta l'autore |
Focardi_preprint_Improved-estimate_2015.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
386.33 kB
Formato
Unknown
|
386.33 kB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.