We prove quasi-monotonicity formulas for classical obstacle-type problems with energies being the sum of a quadratic form with Lipschitz coefficients, and a Hölder continuous linear term. With the help of those formulas we are able to carry out the full analysis of the regularity of free-boundary points following the approaches by Caffarelli, Weiss and Monneau.
Monotonicity formulas for obstacle problems with Lipschitz coefficients / Focardi, Matteo; Stella Gelli, Maria; Spadaro, EMANUELE NUNZIO. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - 54:2(2015), pp. 1547-1573. [10.1007/s00526-015-0835-0]
Monotonicity formulas for obstacle problems with Lipschitz coefficients
Emanuele Spadaro
2015
Abstract
We prove quasi-monotonicity formulas for classical obstacle-type problems with energies being the sum of a quadratic form with Lipschitz coefficients, and a Hölder continuous linear term. With the help of those formulas we are able to carry out the full analysis of the regularity of free-boundary points following the approaches by Caffarelli, Weiss and Monneau.File | Dimensione | Formato | |
---|---|---|---|
Focardi_Monotonicity_2015.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
640.25 kB
Formato
Adobe PDF
|
640.25 kB | Adobe PDF | Contatta l'autore |
Focardi_preprint_Monotonicity_2015.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
311.91 kB
Formato
Unknown
|
311.91 kB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.