In this paper a generalized class of filtered Lyapunov functions is introduced, which are Lyapunov functions with time-varying parameters satisfying certain differential equations. Filtered Lyapunov functions have the same stability properties as Lyapunov functions. Tools are given for designing composite filtered Lyapunov functions for cascaded systems. These functions are used to design globally stabilizing dynamic feedback laws for block-feedforward systems with stabilizable linear approximation. © 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society.
Stabilization of nonlinear systems with filtered lyapunov functions and feedback passivation / Battilotti, Stefano. - In: ASIAN JOURNAL OF CONTROL. - ISSN 1561-8625. - STAMPA. - 14:4(2012), pp. 924-935. [10.1002/asjc.520]
Stabilization of nonlinear systems with filtered lyapunov functions and feedback passivation
Battilotti, Stefano
2012
Abstract
In this paper a generalized class of filtered Lyapunov functions is introduced, which are Lyapunov functions with time-varying parameters satisfying certain differential equations. Filtered Lyapunov functions have the same stability properties as Lyapunov functions. Tools are given for designing composite filtered Lyapunov functions for cascaded systems. These functions are used to design globally stabilizing dynamic feedback laws for block-feedforward systems with stabilizable linear approximation. © 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society.File | Dimensione | Formato | |
---|---|---|---|
Battilotti_Filtered-feedback-passivation_2012.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
372.99 kB
Formato
Adobe PDF
|
372.99 kB | Adobe PDF | Contatta l'autore |
VE_2012_11573-1117340.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
323.82 kB
Formato
Adobe PDF
|
323.82 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.