We construct Lipschitz Q-valued functions which approximate carefully integral currents when their cylindrical excess is small and they are almost minimizing in a suitable sense. This result is used in two subsequent works to prove the discreteness of the singular set for the following three classes of 2-dimensional integral currents: area minimizing in Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional area minimizing cones.
Regularity of area minimizing currents I: gradient Lpestimates / De Lellis, Camillo; Spadaro, EMANUELE NUNZIO. - In: GEOMETRIC AND FUNCTIONAL ANALYSIS. - ISSN 1016-443X. - 24:6(2014), pp. 1831-1884. [10.1007/s00039-014-0306-3]
Regularity of area minimizing currents I: gradient Lpestimates
Emanuele Spadaro
2014
Abstract
We construct Lipschitz Q-valued functions which approximate carefully integral currents when their cylindrical excess is small and they are almost minimizing in a suitable sense. This result is used in two subsequent works to prove the discreteness of the singular set for the following three classes of 2-dimensional integral currents: area minimizing in Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional area minimizing cones.File | Dimensione | Formato | |
---|---|---|---|
DeLellis_Regularity-of-area-minimizing_2014.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
684.09 kB
Formato
Adobe PDF
|
684.09 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.