We prove that there exists a positive, explicit function $F(k, E)$ such that, for any group $G$ admitting a $k$-acylindrical splitting and any generating set $S$ of $G$ with $\mathrmEnt(G,S)<E$, we have $|S| \leq F(k, E)$. We deduce corresponding finiteness results for classes of groups possessing acylindrical splittings and acting geometrically with bounded entropy: for instance, $D$-quasiconvex $k$-malnormal amalgamated products acting on $\delta$-hyperbolic spaces or on $CAT(0)$-spaces with entropy bounded by $E$. A number of finiteness results for interesting families of Riemannian or metric spaces with bounded entropy and diameter also follow: Riemannian 2-orbifolds, non-geometric $3$-manifolds, higher dimensional graph manifolds and cusp-decomposable manifolds, ramified coverings and, more generally, CAT(0)-groups with negatively curved splittings.

Entropy and finiteness of groups with acylindrical splittings / Cerocchi, Filippo; Sambusetti, Andrea. - ELETTRONICO. - (2017).

Entropy and finiteness of groups with acylindrical splittings

Filippo Cerocchi;Andrea Sambusetti
2017

Abstract

We prove that there exists a positive, explicit function $F(k, E)$ such that, for any group $G$ admitting a $k$-acylindrical splitting and any generating set $S$ of $G$ with $\mathrmEnt(G,S)
2017
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1116579
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact