We prove the following entropy-rigidity result in finite volume: if $X$ is a negatively curved manifold with curvature $-b^2leq K_X leq -1$, then $Ent_top(X) = n-1$ if and only if $X$ is hyperbolic. In particular, if $X$ has the same length spectrum of a hyperbolic manifold $X_0$, the it is isometric to $X_0$ (we also give a direct, entropy-free proof of this fact). We compare with the classical theorems holding in the compact case, pointing out the main difficulties to extend them to finite volume manifolds.

Entropy Rigidity of negatively curved manifolds of finite volume / Peigne, M.; Sambusetti, A.. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - ELETTRONICO. - (2018).

Entropy Rigidity of negatively curved manifolds of finite volume

A. Sambusetti
2018

Abstract

We prove the following entropy-rigidity result in finite volume: if $X$ is a negatively curved manifold with curvature $-b^2leq K_X leq -1$, then $Ent_top(X) = n-1$ if and only if $X$ is hyperbolic. In particular, if $X$ has the same length spectrum of a hyperbolic manifold $X_0$, the it is isometric to $X_0$ (we also give a direct, entropy-free proof of this fact). We compare with the classical theorems holding in the compact case, pointing out the main difficulties to extend them to finite volume manifolds.
2018
Mathematics - differential geometry; mathematics - differential geometry; 53C20; G.0
01 Pubblicazione su rivista::01a Articolo in rivista
Entropy Rigidity of negatively curved manifolds of finite volume / Peigne, M.; Sambusetti, A.. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - ELETTRONICO. - (2018).
File allegati a questo prodotto
File Dimensione Formato  
Peigné_Entropy-rigidity_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 517.1 kB
Formato Adobe PDF
517.1 kB Adobe PDF   Contatta l'autore
Peigné_preprint_Entropy-rigidity_2018.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 255.43 kB
Formato Adobe PDF
255.43 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1116574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact