We prove the following entropy-rigidity result in finite volume: if $X$ is a negatively curved manifold with curvature $-b^2leq K_X leq -1$, then $Ent_top(X) = n-1$ if and only if $X$ is hyperbolic. In particular, if $X$ has the same length spectrum of a hyperbolic manifold $X_0$, the it is isometric to $X_0$ (we also give a direct, entropy-free proof of this fact). We compare with the classical theorems holding in the compact case, pointing out the main difficulties to extend them to finite volume manifolds.
Entropy Rigidity of negatively curved manifolds of finite volume / Peigne, M.; Sambusetti, A.. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - ELETTRONICO. - (2018).
Entropy Rigidity of negatively curved manifolds of finite volume
A. Sambusetti
2018
Abstract
We prove the following entropy-rigidity result in finite volume: if $X$ is a negatively curved manifold with curvature $-b^2leq K_X leq -1$, then $Ent_top(X) = n-1$ if and only if $X$ is hyperbolic. In particular, if $X$ has the same length spectrum of a hyperbolic manifold $X_0$, the it is isometric to $X_0$ (we also give a direct, entropy-free proof of this fact). We compare with the classical theorems holding in the compact case, pointing out the main difficulties to extend them to finite volume manifolds.File | Dimensione | Formato | |
---|---|---|---|
Peigné_Entropy-rigidity_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
517.1 kB
Formato
Adobe PDF
|
517.1 kB | Adobe PDF | Contatta l'autore |
Peigné_preprint_Entropy-rigidity_2018.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
255.43 kB
Formato
Adobe PDF
|
255.43 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.