We study the asymptotic behaviour of simply connected, Riemannian manifolds $X$ of strictly negative curvature admitting a non-uniform lattice $\Gamma$. If the quotient manifold $\bar X= \Gamma \backslash X$ is asymptotically $1/4$-pinched, we prove that $\Gamma$ is divergent and $U\bar X$ has finite Bowen-Margulis measure (which is then ergodic and totally conservative with respect to the geodesic flow); moreover, we show that, in this case, the volume growth of balls $B(x,R)$ in $X$ is asymptotically equivalent to a purely exponential function $c(x)e^\delta R$, where $\delta$ is the topological entropy of the geodesic flow of $\bar X$. \linebreak This generalizes Margulis' celebrated theorem to negatively curved spaces of finite volume. In contrast, we exhibit examples of lattices $\Gamma$ in negatively curved spaces $X$ (not asymptotically $1/4$-pinched) where, depending on the critical exponent of the parabolic subgroups and on the finiteness of the Bowen-Margulis measure, the growth function is exponential, lower-exponential or even upper-exponential.

Asymptotic geometry of negatively curved manifolds of finite volume / Dal'Bo, F.; Peigné, M.; Picaud, J. C.; Sambusetti, A.. - In: ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - ISSN 0012-9593. - STAMPA. - .

Asymptotic geometry of negatively curved manifolds of finite volume

A. Sambusetti

Abstract

We study the asymptotic behaviour of simply connected, Riemannian manifolds $X$ of strictly negative curvature admitting a non-uniform lattice $\Gamma$. If the quotient manifold $\bar X= \Gamma \backslash X$ is asymptotically $1/4$-pinched, we prove that $\Gamma$ is divergent and $U\bar X$ has finite Bowen-Margulis measure (which is then ergodic and totally conservative with respect to the geodesic flow); moreover, we show that, in this case, the volume growth of balls $B(x,R)$ in $X$ is asymptotically equivalent to a purely exponential function $c(x)e^\delta R$, where $\delta$ is the topological entropy of the geodesic flow of $\bar X$. \linebreak This generalizes Margulis' celebrated theorem to negatively curved spaces of finite volume. In contrast, we exhibit examples of lattices $\Gamma$ in negatively curved spaces $X$ (not asymptotically $1/4$-pinched) where, depending on the critical exponent of the parabolic subgroups and on the finiteness of the Bowen-Margulis measure, the growth function is exponential, lower-exponential or even upper-exponential.
Mathematics - Differential Geometry; Mathematics - Differential Geometry; 53C20, 37C35; F.0
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotic geometry of negatively curved manifolds of finite volume / Dal'Bo, F.; Peigné, M.; Picaud, J. C.; Sambusetti, A.. - In: ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - ISSN 0012-9593. - STAMPA. - .
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1116572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact