On the basis of the Carleman estimate for the parabolic equation, we prove a Carleman estimate for the integro-differential operator $\partial_t-\triangle+\int_0^t K(x,t,r)\triangle\ dr$ where the integral kernel has a behaviour like a weakly singular one. In the proof we consider the integral term as a perturbation. The crucial point is a special choice of the time factor of the weight function.

Carleman estimates for integro-differential parabolic equations with singular memory kernels / Loreti, Paola; Sforza, Daniela; Yamamoto, Masahiro. - In: JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS. - ISSN 2296-9020. - ELETTRONICO. - 3:1-2(2017), pp. 53-64. [10.1007/s41808-017-0004-z]

Carleman estimates for integro-differential parabolic equations with singular memory kernels

Loreti, Paola;Sforza, Daniela;Yamamoto, Masahiro
2017

Abstract

On the basis of the Carleman estimate for the parabolic equation, we prove a Carleman estimate for the integro-differential operator $\partial_t-\triangle+\int_0^t K(x,t,r)\triangle\ dr$ where the integral kernel has a behaviour like a weakly singular one. In the proof we consider the integral term as a perturbation. The crucial point is a special choice of the time factor of the weight function.
parabolic equations; integro-differential equations; fading memory; Carleman estimate
01 Pubblicazione su rivista::01a Articolo in rivista
Carleman estimates for integro-differential parabolic equations with singular memory kernels / Loreti, Paola; Sforza, Daniela; Yamamoto, Masahiro. - In: JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS. - ISSN 2296-9020. - ELETTRONICO. - 3:1-2(2017), pp. 53-64. [10.1007/s41808-017-0004-z]
File allegati a questo prodotto
File Dimensione Formato  
loreti-sforza-yamamotoJEPE17.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 698.86 kB
Formato Adobe PDF
698.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1114888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact