On the basis of the Carleman estimate for the parabolic equation, we prove a Carleman estimate for the integro-differential operator $\partial_t-\triangle+\int_0^t K(x,t,r)\triangle\ dr$ where the integral kernel has a behaviour like a weakly singular one. In the proof we consider the integral term as a perturbation. The crucial point is a special choice of the time factor of the weight function.
Carleman estimates for integro-differential parabolic equations with singular memory kernels / Loreti, Paola; Sforza, Daniela; Yamamoto, Masahiro. - In: JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS. - ISSN 2296-9020. - ELETTRONICO. - 3:1-2(2017), pp. 53-64. [10.1007/s41808-017-0004-z]
Carleman estimates for integro-differential parabolic equations with singular memory kernels
Loreti, Paola;Sforza, Daniela;Yamamoto, Masahiro
2017
Abstract
On the basis of the Carleman estimate for the parabolic equation, we prove a Carleman estimate for the integro-differential operator $\partial_t-\triangle+\int_0^t K(x,t,r)\triangle\ dr$ where the integral kernel has a behaviour like a weakly singular one. In the proof we consider the integral term as a perturbation. The crucial point is a special choice of the time factor of the weight function.File | Dimensione | Formato | |
---|---|---|---|
loreti-sforza-yamamotoJEPE17.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
698.86 kB
Formato
Adobe PDF
|
698.86 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.