We release to the community six large-scale sense-annotated datasets in multiple language to pave the way for supervised multilingual Word Sense Disambiguation. Our datasets cover all the nouns in the English WordNet and their translations in other languages for a total of millions of sense-tagged sentences. Experiments prove that these corpora can be effectively used as training sets for supervised WSD systems, surpassing the state of the art for low- resourced languages and providing competitive results for English, where manually annotated training sets are accessible. The data is available at trainomatic. org.

Huge automatically extracted training sets for multilingual Word Sense Disambiguation / Pasini, Tommaso; Elia, FRANCESCO MARIA; Navigli, Roberto. - ELETTRONICO. - (2018). (Intervento presentato al convegno Language Resources Evaluation Conference. LREC 2018 tenutosi a Myazaki, Japan).

Huge automatically extracted training sets for multilingual Word Sense Disambiguation

Tommaso Pasini
;
ELIA, FRANCESCO MARIA
;
Roberto Navigli
2018

Abstract

We release to the community six large-scale sense-annotated datasets in multiple language to pave the way for supervised multilingual Word Sense Disambiguation. Our datasets cover all the nouns in the English WordNet and their translations in other languages for a total of millions of sense-tagged sentences. Experiments prove that these corpora can be effectively used as training sets for supervised WSD systems, surpassing the state of the art for low- resourced languages and providing competitive results for English, where manually annotated training sets are accessible. The data is available at trainomatic. org.
2018
Language Resources Evaluation Conference. LREC 2018
Trainin data; Word Sense Disambiguation; Resource; Dataset
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Huge automatically extracted training sets for multilingual Word Sense Disambiguation / Pasini, Tommaso; Elia, FRANCESCO MARIA; Navigli, Roberto. - ELETTRONICO. - (2018). (Intervento presentato al convegno Language Resources Evaluation Conference. LREC 2018 tenutosi a Myazaki, Japan).
File allegati a questo prodotto
File Dimensione Formato  
Pasini_Huge_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 288.81 kB
Formato Adobe PDF
288.81 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1114206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact