We have developed a noninvasive, all-optical, holographic technique for permanently aligning liquid crystalline DNA filaments in a microperiodic template realized in soft-composite (polymeric) materials. By combining optical intensity holography with a selective microfluidic etching process, a channelled microstructure has been realized which enables self-assembly of DNA. The striking chemicophysical properties of the structure immobilize the DNA filaments within the microchannels without the need of any kind of surface chemistry or functionalization. Polarized optical, confocal, and electronic microscopies have been used for characterizing the DNA geometry inside the microchannels in terms of birefringence, fluorescence, and nanoscale organization properties. In particular, observation of a far-field diffraction pattern confirms a periodic organization of the DNA filaments inside the polymeric template. © 2013 American Chemical Society.
Directed organization of DNA filaments in a soft matter template / De Sio, Luciano; D'Aquila, Patrizia; Brunelli, Elvira; Strangi, Giuseppe; Bellizzi, Dina; Passarino, Giuseppe; Umeton, Cesare; Bartolino, Roberto. - In: LANGMUIR. - ISSN 0743-7463. - 29:10(2013), pp. 3398-3403. [10.1021/la3035787]
Directed organization of DNA filaments in a soft matter template
De Sio, Luciano
;Bartolino, Roberto
2013
Abstract
We have developed a noninvasive, all-optical, holographic technique for permanently aligning liquid crystalline DNA filaments in a microperiodic template realized in soft-composite (polymeric) materials. By combining optical intensity holography with a selective microfluidic etching process, a channelled microstructure has been realized which enables self-assembly of DNA. The striking chemicophysical properties of the structure immobilize the DNA filaments within the microchannels without the need of any kind of surface chemistry or functionalization. Polarized optical, confocal, and electronic microscopies have been used for characterizing the DNA geometry inside the microchannels in terms of birefringence, fluorescence, and nanoscale organization properties. In particular, observation of a far-field diffraction pattern confirms a periodic organization of the DNA filaments inside the polymeric template. © 2013 American Chemical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.