One of the most relevant problems in Principal Component Analysis and Factor Analysis is the interpretation of the components/factors. In this paper, Disjoint Principal Component Analysis model is extended in a maximum likelihood framework to allow for inference on the model parameters. A coordinate ascent algorithm is proposed to estimate the model parameters. The performance of the methodology is evaluated on simulated and real data sets.

Probabilistic Disjoint Principal Component Analysis / Ferrara, Carla; Martella, Francesca; Vichi, Maurizio. - In: MULTIVARIATE BEHAVIORAL RESEARCH. - ISSN 0027-3171. - STAMPA. - (2018). [10.1080/00273171.2018.1485006]

Probabilistic Disjoint Principal Component Analysis

Ferrara Carla
;
Martella Francesca;Vichi Maurizio
2018

Abstract

One of the most relevant problems in Principal Component Analysis and Factor Analysis is the interpretation of the components/factors. In this paper, Disjoint Principal Component Analysis model is extended in a maximum likelihood framework to allow for inference on the model parameters. A coordinate ascent algorithm is proposed to estimate the model parameters. The performance of the methodology is evaluated on simulated and real data sets.
2018
probabilistic model; partition of variables; maximum likelihood estimation
01 Pubblicazione su rivista::01a Articolo in rivista
Probabilistic Disjoint Principal Component Analysis / Ferrara, Carla; Martella, Francesca; Vichi, Maurizio. - In: MULTIVARIATE BEHAVIORAL RESEARCH. - ISSN 0027-3171. - STAMPA. - (2018). [10.1080/00273171.2018.1485006]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1112999
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact