This paper presents Wiki-MID, a LOD compliant multidomain interests dataset to train and test Recommender Systems, and the methodology to create the dataset from Twitter messages in English and Italian. Our English dataset includes an average of 90 multi-domain preferences per user on music, books, movies, celebrities, sport, politics and much more, for about half million users traced during six months in 2017. Preferences are either extracted from messages of users who use Spotify, Goodreads and other similar content sharing platforms, or induced from their ”topical” friends, i.e., followees representing an interest rather than a social relation between peers. In addition, preferred items are matched with Wikipedia articles describing them. This unique feature of our dataset provides a mean to categorize preferred items, exploiting available semantic resources linked to Wikipedia such as the Wikipedia Category Graph, DBpedia, BabelNet and others.

Wiki-MID: a very large Multi-domain Interests Dataset of Twitter users with mappings to Wikipedia / DI TOMMASO, Giorgia; Faralli, Stefano; Stilo, Giovanni; Velardi, Paola. - STAMPA. - (2018). (Intervento presentato al convegno 17th International Semantic Web Conference (ISWC) tenutosi a Monterey, California, USA).

Wiki-MID: a very large Multi-domain Interests Dataset of Twitter users with mappings to Wikipedia

Giorgia Di Tommaso
;
Stefano Faralli
;
Giovanni Stilo
;
Paola Velardi
2018

Abstract

This paper presents Wiki-MID, a LOD compliant multidomain interests dataset to train and test Recommender Systems, and the methodology to create the dataset from Twitter messages in English and Italian. Our English dataset includes an average of 90 multi-domain preferences per user on music, books, movies, celebrities, sport, politics and much more, for about half million users traced during six months in 2017. Preferences are either extracted from messages of users who use Spotify, Goodreads and other similar content sharing platforms, or induced from their ”topical” friends, i.e., followees representing an interest rather than a social relation between peers. In addition, preferred items are matched with Wikipedia articles describing them. This unique feature of our dataset provides a mean to categorize preferred items, exploiting available semantic resources linked to Wikipedia such as the Wikipedia Category Graph, DBpedia, BabelNet and others.
2018
17th International Semantic Web Conference (ISWC)
LOD-compliant dataset; semantic recommender systems; multi-domain
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Wiki-MID: a very large Multi-domain Interests Dataset of Twitter users with mappings to Wikipedia / DI TOMMASO, Giorgia; Faralli, Stefano; Stilo, Giovanni; Velardi, Paola. - STAMPA. - (2018). (Intervento presentato al convegno 17th International Semantic Web Conference (ISWC) tenutosi a Monterey, California, USA).
File allegati a questo prodotto
File Dimensione Formato  
Velardi_Wiki_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1112882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact