In \cite{LM} we considered a nontrivial example of eigenfunction in the sense of distribution for the planar Fourier transform. Here a method to obtain other eigenfunctions is proposed. Moreover we consider positive homogeneous distributions in \(\R^n\) of order \(-n/2\). It is shown that \({F(\om)}{|\bx|^{-n/2}}, |\om|=1\) is an eigenfunction in the sense of distribution of the Fourier transform if and only if \(F(\om)\) is an eigenfunction of a certain singular integral operator on the unit sphere of \(\R^n\). Since \(Y_{m,n}^{(k)}(\om)|\bx|^{-n/2}\) are eigenfunctions of the Fourier transform, we deduce that \(Y_{m,n}^{(k)}\) are eigenfunctions of the above mentioned singular integral operator. Here \(Y_{m,n}^{(k)}\) denote the spherical functions of order \(m\) in \(\R^n\). In the planar case, we give a description of all eigenfunctions of the Fourier transform of the form \({F(\om)}{|\bx|^{-1}}\) by means of the Fourier coefficients of \(F(\om)\).

On eigenfunctions of the Fourier transform / Lanzara, Flavia; Maz'Ya, Vladimir. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - STAMPA. - 235:2(2018), pp. 182-198. [10.1007/s10958-018-4067-7]

On eigenfunctions of the Fourier transform

Flavia Lanzara;
2018

Abstract

In \cite{LM} we considered a nontrivial example of eigenfunction in the sense of distribution for the planar Fourier transform. Here a method to obtain other eigenfunctions is proposed. Moreover we consider positive homogeneous distributions in \(\R^n\) of order \(-n/2\). It is shown that \({F(\om)}{|\bx|^{-n/2}}, |\om|=1\) is an eigenfunction in the sense of distribution of the Fourier transform if and only if \(F(\om)\) is an eigenfunction of a certain singular integral operator on the unit sphere of \(\R^n\). Since \(Y_{m,n}^{(k)}(\om)|\bx|^{-n/2}\) are eigenfunctions of the Fourier transform, we deduce that \(Y_{m,n}^{(k)}\) are eigenfunctions of the above mentioned singular integral operator. Here \(Y_{m,n}^{(k)}\) denote the spherical functions of order \(m\) in \(\R^n\). In the planar case, we give a description of all eigenfunctions of the Fourier transform of the form \({F(\om)}{|\bx|^{-1}}\) by means of the Fourier coefficients of \(F(\om)\).
2018
Fourier transform; eigenfunction; singular integral operator; Fourier series
01 Pubblicazione su rivista::01a Articolo in rivista
On eigenfunctions of the Fourier transform / Lanzara, Flavia; Maz'Ya, Vladimir. - In: JOURNAL OF MATHEMATICAL SCIENCES. - ISSN 1072-3374. - STAMPA. - 235:2(2018), pp. 182-198. [10.1007/s10958-018-4067-7]
File allegati a questo prodotto
File Dimensione Formato  
Lanzara_On-eigenfunctions_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 226.05 kB
Formato Adobe PDF
226.05 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1111070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact