Anthracyclines self-assemble in water into dimers. In the presence of sufficiently high salt (NaCl) concentrations, solutions of the antibiotic doxorubicin, but not those of the closely related molecules daunomycin and epirubicin, turn into gels barely compatible with the presence of small oligomers. The use of spectroscopic, scattering, imaging and computational techniques, allowed light to be shed on the self-assembly process that triggered doxorubicin gelification. A complex picture emerged, with doxorubicin molecules assembled into long, highly chiral, supramolecular aggregates made of hundreds of units, showing redshifted fluorescence spectra, very short fluorescence lifetimes and small-angle X-ray scattering profiles compatible with long cylinders. The involvement of specific chemical groups and the need for a specific stereochemistry of the monomers in the formation of a hydrogen-bond network to stabilise the supramolecular aggregates was supported by molecular dynamics calculations. A salt-induced, temperature-dependent, cooperative nucleation–elongation supramolecular polymerisation of the doxorubicin molecules is deduced. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
A stereochemically driven supramolecular polymerization / Tasca, Elisamaria; D'Abramo, Marco; Galantini, Luciano; Giuliani, Anna Maria; Pavel, Nicolae Viorel; Palazzo, Gerardo; Giustini, Mauro. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. - STAMPA. - 24:32(2018), pp. 8195-8204. [10.1002/chem.201800644]
A stereochemically driven supramolecular polymerization
Tasca, Elisamaria;D'Abramo, Marco;Galantini, Luciano;Pavel, Nicolae Viorel;Giustini, Mauro
2018
Abstract
Anthracyclines self-assemble in water into dimers. In the presence of sufficiently high salt (NaCl) concentrations, solutions of the antibiotic doxorubicin, but not those of the closely related molecules daunomycin and epirubicin, turn into gels barely compatible with the presence of small oligomers. The use of spectroscopic, scattering, imaging and computational techniques, allowed light to be shed on the self-assembly process that triggered doxorubicin gelification. A complex picture emerged, with doxorubicin molecules assembled into long, highly chiral, supramolecular aggregates made of hundreds of units, showing redshifted fluorescence spectra, very short fluorescence lifetimes and small-angle X-ray scattering profiles compatible with long cylinders. The involvement of specific chemical groups and the need for a specific stereochemistry of the monomers in the formation of a hydrogen-bond network to stabilise the supramolecular aggregates was supported by molecular dynamics calculations. A salt-induced, temperature-dependent, cooperative nucleation–elongation supramolecular polymerisation of the doxorubicin molecules is deduced. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimFile | Dimensione | Formato | |
---|---|---|---|
Tasca_A-stereochemically-driven_2018.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Contatta l'autore |
Tasca_AStereochemically_2018.pdf
solo gestori archivio
Note: https://onlinelibrary.wiley.com/doi/epdf/10.1002/chem.201800644
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.