Circumstellar Disks represent a very modern object of investigation, for many reasons. First, the investigation on their evolution aims at explaining the configuration of several thousand of planetary systems detected so far and may give important answers even on the formation of Solar System. Secondly, the early development of the interferometric technique to observe in the infrared and mm wave-length, opened a wide range of possibilities to observe disks with very short angular resolution. Thus, Disks constitute a wide target, stimulating the application and the improvement of the most advanced observational techniques. Moreover, disk evolution is driven by several physical processes, both dynamical and hydrodynamical, they are indeed one of the most important objects of application of several sophisticated numerical techniques. Protoplanetary disks have become, since the last 20 years, a key target in the field of star clusters. Their evolution in heterogeneous environments rich in stars and gas represents a new frontier for the Numerical Astronomy because it carries several issues still not overcome. The recent discoveries of circumstellar disks in open clusters opened to new perspectives to the theoretical investigations of non-isolated exoplanetary systems in their primordial gaseous state. For such purposes, my PhD activity aimed at building a suitable numerical investigating instrument, able to face this and many other problems related to the interaction between gaseous systems and stars. In this document, I will present a new Algorithm developed to treat the evolution of gaseous systems (both selfgravitating and non-selfgravitating) and their interaction with Stars. The Code is based on the well-known Lagrangian Smoothed Particle Hydrodynamics approach, and contains a numerical technique to couple a gas distribution with a few amounts of point-mass particles, evaluating, with high precision, their motion. The calculus of self-gravity is accomplished with a tree-scheme approach. After describing some basic stability and performance tests, I will focus on the main problem investigated during my work: the evolution of protoplanetary disks perturbed by passing-by stars, which constitute an approximated scheme of the more complex disk-stellar environment interaction.

I Dischi Circumstellari costituiscono un campo di studio molto moderno, per diverse ragioni. Prima di tutto, lo studio dell'evoluzione di tali sistemi mira a spiegare la configurazione delle migliaia di sistemi planetari che sono stati osservati fin ora, e può fornire risposte importanti anche sulla formazione del Sistema Solare. In secondo luogo, gli sviluppi delle tecnologie interferometriche nella banda Infrarossa e Millimetrica hanno fornito un ampia gamma di possibilità di osservare i dischi con una risoluzione angolare molto piccola. I dischi hanno dunque rappresentato un ampio target osservativo che ha stimolato non in maniera indifferente l'applicazione e il miglioramento delle più avanzate tecniche osservative. Inoltre, l'evoluzione dei dischi è guidata da diversi processi fisici, sia dinamici sia idrodinamici, e dunque essi figurano tragli oggetti di studio più importanti a cui applciare sofisticate tecniche di modellistica numerica. In particolare, i dischi Protoplanetari sono diventati, dagli ultimi due decenni, un obbiettivo chiave nel campo dei sistemi stellari multipli. La loro evoluzione in ambienti eterogenei ricchi di stelle e gas rappresenta una nuova frontiera del calcolo numerico applicato all’astronomia, perché implica numerosi problemi ancora irrisolti. Le recenti scoperte di dischi in ammassi aperti ha aperto a nuove prospettive nello studio teorico di sistemi planetari extrasolari nel loro stato primordiale gassoso. Per queste ragioni, l’attività del mio Dottorato ha come scopo l’implementazione di uno strumento di modellistica numerico, capace di affrontare questi e molti altri problemi legati all’interazione tra gas e stelle. In questo documento, il Sottoscritto presenterà un nuovo algoritmo sviluppato per integrare l’evoluzione temporale di sistemi gassosi (con o senza gravità) e la loro interazione con le stelle. Il codice si basa sul ben noto approccio Smoothed Particles Hydrodynamics (SPH), e contiene un metodo numerico per accoppiare il cas con un limitato numero di punti di massa calcolando, con elevata precisione, la loro mutua interazione gravitazionale. Il calcolo dell’autogravità è fatto approssimando la forza mediante il noto Tree-Scheme. Dopo aver descritto alcuni test basilari sulla stabilità e sulle prestazioni, il Sottoscritto descriverà il problema astrofisico principale studiato durante il lavoro di dottorato: l’evoluzione di dischi protoplanetari perturbati da stelle che effettuano incontri ravvicinati, che cistituisce uno schema approssimato del più complesso caso di interazione di un disco con l’ambiente stellare in cui esso è immerso.

The development of an SPH tree-based algorithm to investigate the evolution of self-gravitating Protoplanetary Disks / Pinto, LUIS DIEGO. - (2018 Jan 08).

The development of an SPH tree-based algorithm to investigate the evolution of self-gravitating Protoplanetary Disks

PINTO, LUIS DIEGO
08/01/2018

Abstract

Circumstellar Disks represent a very modern object of investigation, for many reasons. First, the investigation on their evolution aims at explaining the configuration of several thousand of planetary systems detected so far and may give important answers even on the formation of Solar System. Secondly, the early development of the interferometric technique to observe in the infrared and mm wave-length, opened a wide range of possibilities to observe disks with very short angular resolution. Thus, Disks constitute a wide target, stimulating the application and the improvement of the most advanced observational techniques. Moreover, disk evolution is driven by several physical processes, both dynamical and hydrodynamical, they are indeed one of the most important objects of application of several sophisticated numerical techniques. Protoplanetary disks have become, since the last 20 years, a key target in the field of star clusters. Their evolution in heterogeneous environments rich in stars and gas represents a new frontier for the Numerical Astronomy because it carries several issues still not overcome. The recent discoveries of circumstellar disks in open clusters opened to new perspectives to the theoretical investigations of non-isolated exoplanetary systems in their primordial gaseous state. For such purposes, my PhD activity aimed at building a suitable numerical investigating instrument, able to face this and many other problems related to the interaction between gaseous systems and stars. In this document, I will present a new Algorithm developed to treat the evolution of gaseous systems (both selfgravitating and non-selfgravitating) and their interaction with Stars. The Code is based on the well-known Lagrangian Smoothed Particle Hydrodynamics approach, and contains a numerical technique to couple a gas distribution with a few amounts of point-mass particles, evaluating, with high precision, their motion. The calculus of self-gravity is accomplished with a tree-scheme approach. After describing some basic stability and performance tests, I will focus on the main problem investigated during my work: the evolution of protoplanetary disks perturbed by passing-by stars, which constitute an approximated scheme of the more complex disk-stellar environment interaction.
8-gen-2018
File allegati a questo prodotto
File Dimensione Formato  
Tesi dottorato Pinto

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 7 MB
Formato Adobe PDF
7 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1100390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact