The mammalian Target of Rapamycin (mTOR) is a molecular complex equipped with kinase activity which controls cell viability being key in the PI3K/PTEN/Akt pathway. mTOR acts by integrating a number of environmental stimuli to regulate cell growth, proliferation, autophagy, and protein synthesis. These effects are based on the modulation of different metabolic pathways. Upregulation of mTOR associates with various pathological conditions, such as obesity, neurodegeneration, and brain tumors. This is the case of high-grade gliomas with a high propensity to proliferation and tissue invasion. Glioblastoma Multiforme (GBM) is a WHO grade IV malignant, aggressive, and lethal glioma. To date, a few treatments are available although the outcome of GBM patients remains poor. Experimental and pathological findings suggest that mTOR upregulation plays a major role in determining an aggressive phenotype, thus determining relapse and chemoresistance. Among several activities, mTOR-induced autophagy suppression is key in GBM malignancy. In this article, we discuss recent evidence about mTOR signaling and its role in normal brain development and pathological conditions, with a special emphasis on its role in GBM.

mTOR-Dependent Cell Proliferation in the Brain / Ryskalin, Larisa; Lazzeri, Gloria; Flaibani, Marina; Biagioni, Francesca; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco. - In: BIOMED RESEARCH INTERNATIONAL. - ISSN 2314-6133. - STAMPA. - 2017:(2017), pp. 1-15. [10.1155/2017/7082696]

mTOR-Dependent Cell Proliferation in the Brain

Biagioni, Francesca
Investigation
;
Frati, Alessandro
Investigation
;
2017

Abstract

The mammalian Target of Rapamycin (mTOR) is a molecular complex equipped with kinase activity which controls cell viability being key in the PI3K/PTEN/Akt pathway. mTOR acts by integrating a number of environmental stimuli to regulate cell growth, proliferation, autophagy, and protein synthesis. These effects are based on the modulation of different metabolic pathways. Upregulation of mTOR associates with various pathological conditions, such as obesity, neurodegeneration, and brain tumors. This is the case of high-grade gliomas with a high propensity to proliferation and tissue invasion. Glioblastoma Multiforme (GBM) is a WHO grade IV malignant, aggressive, and lethal glioma. To date, a few treatments are available although the outcome of GBM patients remains poor. Experimental and pathological findings suggest that mTOR upregulation plays a major role in determining an aggressive phenotype, thus determining relapse and chemoresistance. Among several activities, mTOR-induced autophagy suppression is key in GBM malignancy. In this article, we discuss recent evidence about mTOR signaling and its role in normal brain development and pathological conditions, with a special emphasis on its role in GBM.
2017
tuberous sclerosis complex; rapamycin signaling pathway; term synaptic plasticity; neural progenitor cells; tumor initiating cells; malignant glioma-cells; amino-acid sufficiency; embryonic stem-cells; mammalian target; glioblastoma cells
01 Pubblicazione su rivista::01a Articolo in rivista
mTOR-Dependent Cell Proliferation in the Brain / Ryskalin, Larisa; Lazzeri, Gloria; Flaibani, Marina; Biagioni, Francesca; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco. - In: BIOMED RESEARCH INTERNATIONAL. - ISSN 2314-6133. - STAMPA. - 2017:(2017), pp. 1-15. [10.1155/2017/7082696]
File allegati a questo prodotto
File Dimensione Formato  
Ryskalin_mtor-dependent_2017.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1098785
Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 53
social impact