Reliable nuclear fragmentation models are of utmost importance in hadrontherapy, where Monte Carlo (MC) simulations are used to compute the input parameters of the treatment planning software, to validate the deposited dose calculation, to evaluate the biological effectiveness of the radiation, to correlate the bþ emitters production in the patient body with the delivered dose, and to allow a non- invasive treatment verification. Despite of its large use, the models implemented in Geant4 have shown severe limitations in reproducing the measured secondaries yields in ions interaction below 100 MeV/A, in term of production rates, angular and energy distributions [1–3]. We will present a benchmark of the Geant4 models with double-differential cross sec- tion and angular distributions of the secondary fragments produced in the 12C fragmentation at 62 MeV/A on thin carbon target, such a benchmark includes the recently implemented model INCL++ [4,5]. Moreover, we will present the preliminary results, obtained in simulating the same interaction, with SMF [6] and BLOB [7]. Both, SMF and BLOB are semiclassical one-body approaches to solve the Boltzmann-Langevin equation. They include an identical treatment of the mean-field propagation, on the basis of the same effective interaction, but they differ in the way fluctuations are included. In particular, while SMF employs a Uehling-Uhlenbeck collision term and introduces fluctuations as projected on the density space, BLOB introduces fluctuations in full phase space through a modified collision term where nucleon-nucleon correlations are explicitly involved. Both of them, SMF and BLOB, have been developed to sim- ulate the heavy ion interactions in the Fermi-energy regime. We will show their capabilities in describing 12C fragmentation foreseen their implementation in Geant4.

Validation of Geant4 nuclear reaction models for hadrontherapy and preliminary results with SMF and BLOB / MANCINI TERRACCIANO, Carlo; Caccia, Barbara; Colonna, Maria; Cirrone, Giuseppe A. P.; De Napoli, Marzio; Napolitani, Paolo; Pandola, Luciano. - In: PHYSICA MEDICA. - ISSN 1120-1797. - (2017). [10.1016/j.ejmp.2017. 09.030]

Validation of Geant4 nuclear reaction models for hadrontherapy and preliminary results with SMF and BLOB

Carlo Mancini Terracciano
Primo
Project Administration
;
2017

Abstract

Reliable nuclear fragmentation models are of utmost importance in hadrontherapy, where Monte Carlo (MC) simulations are used to compute the input parameters of the treatment planning software, to validate the deposited dose calculation, to evaluate the biological effectiveness of the radiation, to correlate the bþ emitters production in the patient body with the delivered dose, and to allow a non- invasive treatment verification. Despite of its large use, the models implemented in Geant4 have shown severe limitations in reproducing the measured secondaries yields in ions interaction below 100 MeV/A, in term of production rates, angular and energy distributions [1–3]. We will present a benchmark of the Geant4 models with double-differential cross sec- tion and angular distributions of the secondary fragments produced in the 12C fragmentation at 62 MeV/A on thin carbon target, such a benchmark includes the recently implemented model INCL++ [4,5]. Moreover, we will present the preliminary results, obtained in simulating the same interaction, with SMF [6] and BLOB [7]. Both, SMF and BLOB are semiclassical one-body approaches to solve the Boltzmann-Langevin equation. They include an identical treatment of the mean-field propagation, on the basis of the same effective interaction, but they differ in the way fluctuations are included. In particular, while SMF employs a Uehling-Uhlenbeck collision term and introduces fluctuations as projected on the density space, BLOB introduces fluctuations in full phase space through a modified collision term where nucleon-nucleon correlations are explicitly involved. Both of them, SMF and BLOB, have been developed to sim- ulate the heavy ion interactions in the Fermi-energy regime. We will show their capabilities in describing 12C fragmentation foreseen their implementation in Geant4.
2017
Hadrontherapy; nuclear fragmentation; Monte Carlo simulation
01 Pubblicazione su rivista::01a Articolo in rivista
Validation of Geant4 nuclear reaction models for hadrontherapy and preliminary results with SMF and BLOB / MANCINI TERRACCIANO, Carlo; Caccia, Barbara; Colonna, Maria; Cirrone, Giuseppe A. P.; De Napoli, Marzio; Napolitani, Paolo; Pandola, Luciano. - In: PHYSICA MEDICA. - ISSN 1120-1797. - (2017). [10.1016/j.ejmp.2017. 09.030]
File allegati a questo prodotto
File Dimensione Formato  
PIIS1120179717303496.pdf

accesso aperto

Tipologia: Abstract
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 39.71 kB
Formato Adobe PDF
39.71 kB Adobe PDF
1-s2.0-S1120179717303496-main.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 39.71 kB
Formato Adobe PDF
39.71 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1095914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact