The general conditions, obtained in Lacarbonara and Rega (Int. J. Non-linear Mech. (2002)), for orthogonality of the non-linear normal modes in the cases of two-to-one, three-to-one, and one-to-one internal resonances in undamped unforced one-dimensional systems with arbitrary linear, quadratic and cubic non-linearities are here investigated for a class of shallow symmetric structural systems. Non-linear orthogonality of the modes and activation of the associated interactions are clearly dual problems. It is known that an appropriate integer ratio between the frequencies of the modes of a spatially continuous system is a necessary but not sufficient condition for these modes to be non-linearly coupled. Actual activation/orthogonality of the modes requires the additional condition that the governing effective non-linear interaction coefficients in the normal forms be different/equal to zero. Herein, a detailed picture of activation/orthogonality of bimodal interactions in buckled beams, shallow arches, and suspended cables is presented.
Resonant nonlinear normal modes. Part II: activation/orthogonality conditions for shallow structural systems / Lacarbonara, Walter; Rega, Giuseppe. - In: INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS. - ISSN 0020-7462. - STAMPA. - 38:(2003), pp. 873-887. [10.1016/S0020-7462(02)00034-3]
Resonant nonlinear normal modes. Part II: activation/orthogonality conditions for shallow structural systems
LACARBONARA, Walter;REGA, GIUSEPPE
2003
Abstract
The general conditions, obtained in Lacarbonara and Rega (Int. J. Non-linear Mech. (2002)), for orthogonality of the non-linear normal modes in the cases of two-to-one, three-to-one, and one-to-one internal resonances in undamped unforced one-dimensional systems with arbitrary linear, quadratic and cubic non-linearities are here investigated for a class of shallow symmetric structural systems. Non-linear orthogonality of the modes and activation of the associated interactions are clearly dual problems. It is known that an appropriate integer ratio between the frequencies of the modes of a spatially continuous system is a necessary but not sufficient condition for these modes to be non-linearly coupled. Actual activation/orthogonality of the modes requires the additional condition that the governing effective non-linear interaction coefficients in the normal forms be different/equal to zero. Herein, a detailed picture of activation/orthogonality of bimodal interactions in buckled beams, shallow arches, and suspended cables is presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.