We show the close connection between the enumeration of cliques in a k-clique free graph G and the length of tree-like resolution refutations for formula Clique(G,k), which claims that G has a k-clique. The length of any such tree-like refutation is within a "fixed parameter tractable" factor from the number of cliques in the graph. We then proceed to drastically simplify the proofs of the lower bounds for the length of tree-like resolution refutations of Clique(G,k) shown in [Beyersdorff et at. 2013, Lauria et al. 2017], which now reduce to a simple estimate of the number of cliques.

Cliques enumeration and tree-like resolution proofs / Lauria, Massimo. - In: INFORMATION PROCESSING LETTERS. - ISSN 0020-0190. - 135:(2018), pp. 62-67. [10.1016/j.ipl.2018.03.001]

Cliques enumeration and tree-like resolution proofs

Lauria, Massimo
2018

Abstract

We show the close connection between the enumeration of cliques in a k-clique free graph G and the length of tree-like resolution refutations for formula Clique(G,k), which claims that G has a k-clique. The length of any such tree-like refutation is within a "fixed parameter tractable" factor from the number of cliques in the graph. We then proceed to drastically simplify the proofs of the lower bounds for the length of tree-like resolution refutations of Clique(G,k) shown in [Beyersdorff et at. 2013, Lauria et al. 2017], which now reduce to a simple estimate of the number of cliques.
2018
clique; decision tree; resolution; theory of computation; theoretical computer science; signal processing; information systems; computer science applications;
01 Pubblicazione su rivista::01a Articolo in rivista
Cliques enumeration and tree-like resolution proofs / Lauria, Massimo. - In: INFORMATION PROCESSING LETTERS. - ISSN 0020-0190. - 135:(2018), pp. 62-67. [10.1016/j.ipl.2018.03.001]
File allegati a questo prodotto
File Dimensione Formato  
Lauria_Cliques-enumeration_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 323.45 kB
Formato Adobe PDF
323.45 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1093853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact