The more oxidized mantle peridotites above subducting slabs than stable continental areas have been attributed to the infiltration of some oxidizing fluids released from the subducting slabs. However, knowledge for the redox states of the slabs itself is very limited. Until now, few oxybarometers can be directly used to constrain the redox states of the subducting slabs. The rutile-ilmenite oxybarometer was proposed and successfully applied to constrain the oxygen fugacity of mantle assemblages. However, its application to rocks equilibrated at crustal P-T conditions has been hampered by some uncertainties in an early solid solution model of ilmenite. With a newly-released solid solution model for the ilmenite, we have conducted high-P experiments (at 3 and 5 GPa, and 900–1300°C) to test the accuracy of this oxybarometer. The experiments were performed with their oxygen fugacities controlled by the CCO buffer (i.e., C+O2=CO2). We demonstrated that the oxygen fugacities calculated for our high-P experimental products by using the rutile-ilmenite oxybarometer were in excellent agreement with the fO2 dictated by the CCO buffer, suggesting a wide applicability of this oxybarometer to crust rocks. As examples, the rutile-ilmenite oxybarometer has been used to constrain the oxygen fugacities of some metamorphic rocks such as eclogite, granulite and amphibolite usually observed from the subduction zones

High-pressure experimental verification of rutile-ilmenite oxybarometer: Implications for the redox state of the subduction zone / Renbiao, Tao; Zhang, Lifei; Stagno, Vincenzo; Chu, Xu; Liu, Xi. - STAMPA. - 60:10(2017), pp. 1817-1825. [10.1007/s11430-016-9082-5]

High-pressure experimental verification of rutile-ilmenite oxybarometer: Implications for the redox state of the subduction zone

Tao, RenBiao
;
Stagno, Vincenzo;
2017

Abstract

The more oxidized mantle peridotites above subducting slabs than stable continental areas have been attributed to the infiltration of some oxidizing fluids released from the subducting slabs. However, knowledge for the redox states of the slabs itself is very limited. Until now, few oxybarometers can be directly used to constrain the redox states of the subducting slabs. The rutile-ilmenite oxybarometer was proposed and successfully applied to constrain the oxygen fugacity of mantle assemblages. However, its application to rocks equilibrated at crustal P-T conditions has been hampered by some uncertainties in an early solid solution model of ilmenite. With a newly-released solid solution model for the ilmenite, we have conducted high-P experiments (at 3 and 5 GPa, and 900–1300°C) to test the accuracy of this oxybarometer. The experiments were performed with their oxygen fugacities controlled by the CCO buffer (i.e., C+O2=CO2). We demonstrated that the oxygen fugacities calculated for our high-P experimental products by using the rutile-ilmenite oxybarometer were in excellent agreement with the fO2 dictated by the CCO buffer, suggesting a wide applicability of this oxybarometer to crust rocks. As examples, the rutile-ilmenite oxybarometer has been used to constrain the oxygen fugacities of some metamorphic rocks such as eclogite, granulite and amphibolite usually observed from the subduction zones
2017
high-pressure experiment; ilmenite-rutile oxybarometer; oxygen fugacity; subduction zone; earth and planetary sciences (all)
01 Pubblicazione su rivista::01a Articolo in rivista
High-pressure experimental verification of rutile-ilmenite oxybarometer: Implications for the redox state of the subduction zone / Renbiao, Tao; Zhang, Lifei; Stagno, Vincenzo; Chu, Xu; Liu, Xi. - STAMPA. - 60:10(2017), pp. 1817-1825. [10.1007/s11430-016-9082-5]
File allegati a questo prodotto
File Dimensione Formato  
Tao_High-pressure_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1092514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact