The analytical and numerical design, implementation, and experimental validation of a new grounded closed coplanar waveguide for wide-band electromagnetic exposures of cells and their optical detection in real-time is reported. The realized device fulfills high-quality requirements for novel bioelectromagnetic experiments, involving elevated temporal and spatial resolutions. Excellent performances in terms of matching bandwidth (less than -10 dB up to at least 3 GHz), emission (below 1 × 10-6 W/m2) and efficiency (around 1) have been obtained as revealed by both numerical simulations and experimental measurements. A low spatial electric field inhomogeneity (coefficient of variation of around 10 %) has been achieved within the cell solutions filling the polydimethylsiloxane reservoir of the conceived device. This original bio-chip based on the grounded closed coplanar waveguide concept opens new possibilities for the development of controlled experiments combining electromagnetic exposures and sophisticated imaging using optical spectroscopic techniques.
A wide-band bio-chip for real-time optical detection of bioelectromagnetic interactions with cells / Merla, Caterina; Liberti, Micaela; Marracino, Paolo; Muscat, Adeline; Azan, Antoine; Apollonio, Francesca; Mir Lluis, M. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 8:1(2018), pp. 1-13. [10.1038/s41598-018-23301-w]
A wide-band bio-chip for real-time optical detection of bioelectromagnetic interactions with cells
Liberti Micaela;Marracino Paolo;Apollonio Francesca;
2018
Abstract
The analytical and numerical design, implementation, and experimental validation of a new grounded closed coplanar waveguide for wide-band electromagnetic exposures of cells and their optical detection in real-time is reported. The realized device fulfills high-quality requirements for novel bioelectromagnetic experiments, involving elevated temporal and spatial resolutions. Excellent performances in terms of matching bandwidth (less than -10 dB up to at least 3 GHz), emission (below 1 × 10-6 W/m2) and efficiency (around 1) have been obtained as revealed by both numerical simulations and experimental measurements. A low spatial electric field inhomogeneity (coefficient of variation of around 10 %) has been achieved within the cell solutions filling the polydimethylsiloxane reservoir of the conceived device. This original bio-chip based on the grounded closed coplanar waveguide concept opens new possibilities for the development of controlled experiments combining electromagnetic exposures and sophisticated imaging using optical spectroscopic techniques.File | Dimensione | Formato | |
---|---|---|---|
Merla_Wide-band_2018i.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.41 MB
Formato
Adobe PDF
|
3.41 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.