We consider the following system of Liouville equations: $$\l\{\bll-\D u_1=2e^{u_1}+\mu e^{u_2}&\tx{in }\R^2\\-\D u_2=\mu e^{u_1}+2e^{u_2}&\tx{in }\R^2\\ \int_{\R^2}e^{u_1}<+\infty,\ \int_{\R^2}e^{u_2}<+\infty.\ \earr\r.$$ We show the existence of at least $n-\left[\frac n3\right]$ global branches of nonradial solutions bifurcating from $u_1(x)=u_2(x)=U(x)=\log\fr{64}{(2+\mu)\l(8+|x|^2\r)^2}$ at the values $\mu=-2\fr{n^2+n-2}{n^2+n+2}$ for any $n\in\N$.
Nonradial entire solutions for Liouville systems / Battaglia, Luca; Gladiali, Francesca; Grossi, Massimo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 263:8(2017), pp. 5151-5174. [10.1016/j.jde.2017.06.009]
Nonradial entire solutions for Liouville systems
Grossi, MassimoMembro del Collaboration Group
2017
Abstract
We consider the following system of Liouville equations: $$\l\{\bll-\D u_1=2e^{u_1}+\mu e^{u_2}&\tx{in }\R^2\\-\D u_2=\mu e^{u_1}+2e^{u_2}&\tx{in }\R^2\\ \int_{\R^2}e^{u_1}<+\infty,\ \int_{\R^2}e^{u_2}<+\infty.\ \earr\r.$$ We show the existence of at least $n-\left[\frac n3\right]$ global branches of nonradial solutions bifurcating from $u_1(x)=u_2(x)=U(x)=\log\fr{64}{(2+\mu)\l(8+|x|^2\r)^2}$ at the values $\mu=-2\fr{n^2+n-2}{n^2+n+2}$ for any $n\in\N$.File | Dimensione | Formato | |
---|---|---|---|
Battaglia_Nonradial-entire_2017.pdf
solo gestori archivio
Note: CampoCampo
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
350.77 kB
Formato
Adobe PDF
|
350.77 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.