One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed

Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models / Giona, M.; Brasiello, A.; Crescitelli, S.. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - 112:3(2015). [10.1209/0295-5075/112/30001]

Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models

Giona, M.
;
Brasiello, A.;
2015

Abstract

One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed
2015
fluctuation phenomena; random processes; noise; Brownian motion; stochastic processes; thermodynamics
01 Pubblicazione su rivista::01a Articolo in rivista
Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models / Giona, M.; Brasiello, A.; Crescitelli, S.. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - 112:3(2015). [10.1209/0295-5075/112/30001]
File allegati a questo prodotto
File Dimensione Formato  
Giona_Ergodicity-breaking-bifurcations_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 461.77 kB
Formato Adobe PDF
461.77 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1091644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact