This article introduces the notion of generalized Poisson–Kac (GPK) processes which generalize the class of ‘telegrapher’s noise dynamics’ introduced by Kac (1974 Rocky Mount. J. Math. 4 497) in 1974, using Poissonian stochastic perturbations. In GPK processes the stochastic perturbation acts as a switching amongst a set of stochastic velocity vectors controlled by a Markov-chain dynamics. GPK processes possess trajectory regularity (almost everywhere) and asymptotic Kac limit, namely the convergence towards Brownian motion (and to stochastic dynamics driven by Wiener perturbations), which characterizes also the long-term/long-distance properties of these processes. In this article we introduce the structural properties of GPK processes, leaving all the physical implications to part II and part III

Stochastic foundations of undulatory transport phenomena. Generalized Poisson-Kac processes. Part I basic theory / Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - STAMPA. - 50:33(2017). [10.1088/1751-8121/aa79d4]

Stochastic foundations of undulatory transport phenomena. Generalized Poisson-Kac processes. Part I basic theory

Giona, Massimiliano
;
Brasiello, Antonio;
2017

Abstract

This article introduces the notion of generalized Poisson–Kac (GPK) processes which generalize the class of ‘telegrapher’s noise dynamics’ introduced by Kac (1974 Rocky Mount. J. Math. 4 497) in 1974, using Poissonian stochastic perturbations. In GPK processes the stochastic perturbation acts as a switching amongst a set of stochastic velocity vectors controlled by a Markov-chain dynamics. GPK processes possess trajectory regularity (almost everywhere) and asymptotic Kac limit, namely the convergence towards Brownian motion (and to stochastic dynamics driven by Wiener perturbations), which characterizes also the long-term/long-distance properties of these processes. In this article we introduce the structural properties of GPK processes, leaving all the physical implications to part II and part III
2017
extended irreversible thermodynamics; finite propagation velocity; Markov processes; stochastic processes; statistical and nonlinear physics; statistics and probability; modeling and simulation; mathematical physics; physics and astronomy (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Stochastic foundations of undulatory transport phenomena. Generalized Poisson-Kac processes. Part I basic theory / Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - STAMPA. - 50:33(2017). [10.1088/1751-8121/aa79d4]
File allegati a questo prodotto
File Dimensione Formato  
Giona_Stochastic-foundations-undulatory_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.42 MB
Formato Adobe PDF
3.42 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1091630
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
social impact