This paper presents MULESME, a software designed for the systematic mapping of surface soil moisture using Sentinel-1 SAR data. MULESME implements a multi-temporal algorithm that uses time series of Sentinel-1 data and ancillary data, such as a plant water content map, as inputs. A secondary software module generates the plant water content map from optical data provided by Landsat-8, or Sentinel-2, or MODIS. Each output of MULESME includes another map showing the level of uncertainty of the soil moisture estimates. MULESME was tested by using both synthetic and actual data. The results of the tests showed that root mean square error is in the range between 0.03m(3)/m(3) (synthetic data) and 0.06m(3)/m(3) (actual data) for bare soil. The accuracy decreases in the presence of vegetation (root mean square in the range 0.08e0.12m(3)/m(3)), as expected.

A surface soil moisture mapping service at national (Italian) scale based on Sentinel-1 data / Pulvirenti, Luca; Squicciarino, Giuseppe; Cenci, Luca; Boni, Giorgio; Pierdicca, Nazzareno; Chini, Marco; Versace, Cosimo; Campanella, Paolo. - In: ENVIRONMENTAL MODELLING & SOFTWARE. - ISSN 1364-8152. - 102:(2018), pp. 13-28. [10.1016/j.envsoft.2017.12.022]

A surface soil moisture mapping service at national (Italian) scale based on Sentinel-1 data

CENCI, LUCA;Pierdicca, Nazzareno;
2018

Abstract

This paper presents MULESME, a software designed for the systematic mapping of surface soil moisture using Sentinel-1 SAR data. MULESME implements a multi-temporal algorithm that uses time series of Sentinel-1 data and ancillary data, such as a plant water content map, as inputs. A secondary software module generates the plant water content map from optical data provided by Landsat-8, or Sentinel-2, or MODIS. Each output of MULESME includes another map showing the level of uncertainty of the soil moisture estimates. MULESME was tested by using both synthetic and actual data. The results of the tests showed that root mean square error is in the range between 0.03m(3)/m(3) (synthetic data) and 0.06m(3)/m(3) (actual data) for bare soil. The accuracy decreases in the presence of vegetation (root mean square in the range 0.08e0.12m(3)/m(3)), as expected.
2018
Landsat-8; MODIS; Multi-temporal algorithm; plant water content; sentinel-1; sentinel-2; soil moisture; software; environmental engineering; ecological modeling
01 Pubblicazione su rivista::01a Articolo in rivista
A surface soil moisture mapping service at national (Italian) scale based on Sentinel-1 data / Pulvirenti, Luca; Squicciarino, Giuseppe; Cenci, Luca; Boni, Giorgio; Pierdicca, Nazzareno; Chini, Marco; Versace, Cosimo; Campanella, Paolo. - In: ENVIRONMENTAL MODELLING & SOFTWARE. - ISSN 1364-8152. - 102:(2018), pp. 13-28. [10.1016/j.envsoft.2017.12.022]
File allegati a questo prodotto
File Dimensione Formato  
Pulvirenti_Environmental-modelling_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1090671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact