The oxidative modification of low density lipoprotein (LDL) is thought to be an important factor in the initiation and development of atherosclerosis. Natural and synthetic antioxidants are currently being tested, by they are not necessarily safe for human use. 2 We have previously reported that dipyridamole, currently used in clinical practice, is a potent scavenger of free radicals. Thus, we tested whether dipyridamole could affect LDL oxidation at chemical and cellular level. 3 Chemically induced LDL oxidation was made by Cu(II), Cu(II) plus hydrogen peroxide or peroxyl radicals generated by thermolysis of 2,2'-azo-bis(2-amidino propane). Dipyridamole, (1-10 mu M), inhibited LDL oxidation as monitored by diene formation, evolution of hydroperoxides and thiobarbituric acid reactive substances, apoprotein modification and by the fluorescence of cis-parinaric acid. 4 The physiological relevance of the antioxidant activity was validated by experiments at the cellular level where dipyridamole inhibited endothelial cell-mediated LDL oxidation, their degradation by monocytes, and cytotoxicity. 5 In comparision with ascorbic acid, alpha-tocopherol and probucol, dipyridamole was the more efficient antioxidant with the following order of activity: dipyridamole>probucol>ascorbic acid>alpha-tocopherol. The present study shows that dipyridamole inhibits oxidation of LDL at pharmacologically relevant concentrations. The inhibition of LDL oxidation is unequivocally confirmed by the use of three different methods of chemical oxidation, by several methods of oxidation monitoring, and the pharmacological relevance is demonstrated by the superiority of dipyridamole over the naturally occurring antioxidants, ascorbic acid and alpha-tocopherol and the synthetic antioxidant probucol.
Protection of low density lipoprotein oxidation at chemical and cellular level by the antioxidant drug dipyridamole / Iuliano, Luigi; A. R., Colavita; C., Camastra; V., Bello; C., Quintarelli; M., Alessandroni; F., Piovella; Violi, Francesco. - In: BRITISH JOURNAL OF PHARMACOLOGY. - ISSN 0007-1188. - STAMPA. - 119:7(1996), pp. 1438-1446. [10.1111/j.1476-5381.1996.tb16056.x]
Protection of low density lipoprotein oxidation at chemical and cellular level by the antioxidant drug dipyridamole
IULIANO, Luigi;VIOLI, Francesco
1996
Abstract
The oxidative modification of low density lipoprotein (LDL) is thought to be an important factor in the initiation and development of atherosclerosis. Natural and synthetic antioxidants are currently being tested, by they are not necessarily safe for human use. 2 We have previously reported that dipyridamole, currently used in clinical practice, is a potent scavenger of free radicals. Thus, we tested whether dipyridamole could affect LDL oxidation at chemical and cellular level. 3 Chemically induced LDL oxidation was made by Cu(II), Cu(II) plus hydrogen peroxide or peroxyl radicals generated by thermolysis of 2,2'-azo-bis(2-amidino propane). Dipyridamole, (1-10 mu M), inhibited LDL oxidation as monitored by diene formation, evolution of hydroperoxides and thiobarbituric acid reactive substances, apoprotein modification and by the fluorescence of cis-parinaric acid. 4 The physiological relevance of the antioxidant activity was validated by experiments at the cellular level where dipyridamole inhibited endothelial cell-mediated LDL oxidation, their degradation by monocytes, and cytotoxicity. 5 In comparision with ascorbic acid, alpha-tocopherol and probucol, dipyridamole was the more efficient antioxidant with the following order of activity: dipyridamole>probucol>ascorbic acid>alpha-tocopherol. The present study shows that dipyridamole inhibits oxidation of LDL at pharmacologically relevant concentrations. The inhibition of LDL oxidation is unequivocally confirmed by the use of three different methods of chemical oxidation, by several methods of oxidation monitoring, and the pharmacological relevance is demonstrated by the superiority of dipyridamole over the naturally occurring antioxidants, ascorbic acid and alpha-tocopherol and the synthetic antioxidant probucol.File | Dimensione | Formato | |
---|---|---|---|
Iuliano_Protection_1996.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.91 MB
Formato
Adobe PDF
|
1.91 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.