We prove two rigidity results for a variational infinity ground state $u$ of an open bounded convex domain $Omega subset R ^n$. They state that $u$ coincides with a multiple of the distance from the boundary of $Omega$ if either $| abla u|$ is constant on $partial Omega$, or $u$ is of class $C ^ {1,1}$ outside the high ridge of $Omega$. Consequently, in both cases $Omega$ can be geometrically characterized as a ``stadium-like domain''.

Rigidity results for variational infinity ground states / Crasta, Graziano; Fragalà, Ilaria. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 68:2(2019), pp. 353-367. [10.1512/iumj.2019.68.7617]

Rigidity results for variational infinity ground states

Crasta, Graziano;
2019

Abstract

We prove two rigidity results for a variational infinity ground state $u$ of an open bounded convex domain $Omega subset R ^n$. They state that $u$ coincides with a multiple of the distance from the boundary of $Omega$ if either $| abla u|$ is constant on $partial Omega$, or $u$ is of class $C ^ {1,1}$ outside the high ridge of $Omega$. Consequently, in both cases $Omega$ can be geometrically characterized as a ``stadium-like domain''.
2019
Ground states; infinity Laplacia
01 Pubblicazione su rivista::01a Articolo in rivista
Rigidity results for variational infinity ground states / Crasta, Graziano; Fragalà, Ilaria. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 68:2(2019), pp. 353-367. [10.1512/iumj.2019.68.7617]
File allegati a questo prodotto
File Dimensione Formato  
Crasta_Rigidity-results_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 204.54 kB
Formato Adobe PDF
204.54 kB Adobe PDF   Contatta l'autore
Crasta_preprint_Rigidity-results_2019.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 353.58 kB
Formato Adobe PDF
353.58 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1088454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact