Optical properties of the quasi-two-dimensional single-component molecular Mott insulator [Au(Et-thiazdt)2] (Et-thiazdt = N-ethyl-1,3-thiazoline-2-thione-4,5-dithiolate) have been investigated under pressure at room temperature. At 1.5 GPa, [Au(Et-thiazdt)2] undergoes an insulator to metal transition (IMT). Optical conductivity spectra exhibit a clear Drude peak at high pressure. In addition, we observed a clear anisotropy of pressure-induced modifications of the electronic structure. With increasing pressure, along the molecule stacks, a strong increase of the spectral weight below 1 eV is observed, while in the transverse direction, it remains barely constant with a redistribution from midinfrared to low energy. Besides the increase of the singly occupied molecular orbital (SOMO) bandwidth, calculations show that the SOMO-1 bands cross the Fermi level at the transition. Moreover, we have calculated the optical conductivity as a function of pressure to provide a picture of the compound physics under 1 eV. Our results indicate that the pressure-induced IMT is simultaneously due to a bandwidth and a band-filling phenomenon that imply both Mott physics and uncorrelated charge carriers.

Interplay between bandwidth-controlled and filling-controlled pressure-induced Mott insulator to metal transition in the molecular compound [Au(Et-thiazdt) 2] / Brière, B.; Caillaux, J.; Le Gal, Y.; Lorcy, D.; Lupi, S.; Perucchi, A.; Zaghrioui, M.; Soret, J. C.; Sopracase, R.; Ta Phuoc, V.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - ELETTRONICO. - 97:3(2018). [10.1103/PhysRevB.97.035101]

Interplay between bandwidth-controlled and filling-controlled pressure-induced Mott insulator to metal transition in the molecular compound [Au(Et-thiazdt) 2]

Lupi, S.;
2018

Abstract

Optical properties of the quasi-two-dimensional single-component molecular Mott insulator [Au(Et-thiazdt)2] (Et-thiazdt = N-ethyl-1,3-thiazoline-2-thione-4,5-dithiolate) have been investigated under pressure at room temperature. At 1.5 GPa, [Au(Et-thiazdt)2] undergoes an insulator to metal transition (IMT). Optical conductivity spectra exhibit a clear Drude peak at high pressure. In addition, we observed a clear anisotropy of pressure-induced modifications of the electronic structure. With increasing pressure, along the molecule stacks, a strong increase of the spectral weight below 1 eV is observed, while in the transverse direction, it remains barely constant with a redistribution from midinfrared to low energy. Besides the increase of the singly occupied molecular orbital (SOMO) bandwidth, calculations show that the SOMO-1 bands cross the Fermi level at the transition. Moreover, we have calculated the optical conductivity as a function of pressure to provide a picture of the compound physics under 1 eV. Our results indicate that the pressure-induced IMT is simultaneously due to a bandwidth and a band-filling phenomenon that imply both Mott physics and uncorrelated charge carriers.
2018
electronic; optical and magnetic materials; condensed matter physics
01 Pubblicazione su rivista::01a Articolo in rivista
Interplay between bandwidth-controlled and filling-controlled pressure-induced Mott insulator to metal transition in the molecular compound [Au(Et-thiazdt) 2] / Brière, B.; Caillaux, J.; Le Gal, Y.; Lorcy, D.; Lupi, S.; Perucchi, A.; Zaghrioui, M.; Soret, J. C.; Sopracase, R.; Ta Phuoc, V.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - ELETTRONICO. - 97:3(2018). [10.1103/PhysRevB.97.035101]
File allegati a questo prodotto
File Dimensione Formato  
Brière_Interplay-between-bandwidth-controlled_2018.pdf

solo gestori archivio

Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1083539
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact