Let S be a very general complete intersection surface of multidegree (d1,d2) in P^4. The following problem arises: determine the couples (d1,d2) such that the surface S does not have any “non-evident” rational map to other surfaces. By non-evident rational map, we mean non-birational dominant map whose target space is not rational. We give a partial solution, presenting a class of multidegrees (d1,d2) which satisfy the above condition.
On dominant rational maps from a very general complete intersection surface in P^4 / Caucci, Federico; Cho, Yonghwa; Rizzi, Luca. - In: LE MATEMATICHE. - ISSN 0373-3505. - STAMPA. - 72:2(2017), pp. 183-194. [10.4418/2017.72.2.13]
On dominant rational maps from a very general complete intersection surface in P^4
FEDERICO CAUCCI
;
2017
Abstract
Let S be a very general complete intersection surface of multidegree (d1,d2) in P^4. The following problem arises: determine the couples (d1,d2) such that the surface S does not have any “non-evident” rational map to other surfaces. By non-evident rational map, we mean non-birational dominant map whose target space is not rational. We give a partial solution, presenting a class of multidegrees (d1,d2) which satisfy the above condition.File | Dimensione | Formato | |
---|---|---|---|
Caucci_dominant_maps.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
175.84 kB
Formato
Adobe PDF
|
175.84 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.