Mature hydrocarbon fields co-produce significant volumes of water. As the produced water increases over the life of the field, the project's operating costs increase (due to greater water management expenditure), while the oil revenues decrease. Typically, these waste streams of water have temperatures of 65–150 °C. The combination of moderate temperatures and large water volumes may be suitable for electricity generation and/or district heating. Being able to capture the geothermal energy from existing hydrocarbon fields could extend their lifespan by delaying their economic cut-off point. In this paper, mature oil and gas reservoirs worldwide are critically reviewed, where waste heat recovery has already been tested, or its potential identified. A roadmap of screening criteria based on geological, reservoir, production and economic parameters is then proposed, to assess how, where and when low-temperature waste heat recovery is feasible. The roadmap is tested against the Villafortuna–Trecate oil field in Italy, where the aquifer not only provides pressure support to the reservoir, but also represents a natural, in-situ hydrothermal resource. The results suggest that a single-well could recover approximately 25 GWh of electric power over a 10-year period, with an installed capacity of 500 kW.

A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs / Liu, Xiaolei; Falcone, Gioia; Alimonti, Claudio. - In: ENERGY. - ISSN 0360-5442. - STAMPA. - 142:(2018), pp. 346-355. [10.1016/j.energy.2017.10.058]

A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs

Alimonti, Claudio
Conceptualization
2018

Abstract

Mature hydrocarbon fields co-produce significant volumes of water. As the produced water increases over the life of the field, the project's operating costs increase (due to greater water management expenditure), while the oil revenues decrease. Typically, these waste streams of water have temperatures of 65–150 °C. The combination of moderate temperatures and large water volumes may be suitable for electricity generation and/or district heating. Being able to capture the geothermal energy from existing hydrocarbon fields could extend their lifespan by delaying their economic cut-off point. In this paper, mature oil and gas reservoirs worldwide are critically reviewed, where waste heat recovery has already been tested, or its potential identified. A roadmap of screening criteria based on geological, reservoir, production and economic parameters is then proposed, to assess how, where and when low-temperature waste heat recovery is feasible. The roadmap is tested against the Villafortuna–Trecate oil field in Italy, where the aquifer not only provides pressure support to the reservoir, but also represents a natural, in-situ hydrothermal resource. The results suggest that a single-well could recover approximately 25 GWh of electric power over a 10-year period, with an installed capacity of 500 kW.
2018
geothermal co-production; low-temperature geothermal resources; mature hydrocarbon fields; civil and structural engineering; building and construction; pollution; energy (all); mechanical engineering; industrial and manufacturing engineering; electrical and electronic engineering
01 Pubblicazione su rivista::01a Articolo in rivista
A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs / Liu, Xiaolei; Falcone, Gioia; Alimonti, Claudio. - In: ENERGY. - ISSN 0360-5442. - STAMPA. - 142:(2018), pp. 346-355. [10.1016/j.energy.2017.10.058]
File allegati a questo prodotto
File Dimensione Formato  
Liu_systematic-study-harnessing_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1076920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 55
social impact