Protein mussel-inspired adhesive polymers, characterized by the presence of catechol groups, possess superior muco-adhesive properties and have great potentiality in wound healing. Suitable materials for wound dressing should properly combine muco-adhesiveness and antimicrobial activity. In this work, catechol-functionalized chitosan was obtained by reaction with hydrocaffeic acid (HCAF), in order to investigate how catechol introduction at different content could affect the intrinsic antimicrobial activity of the polymer itself. Unexpectedly, an enhancement of chitosan antimicrobial activity was observed after catechol functionalization, with a fourfold reduction in the polymer minimum inhibitory concentration versus Staphylococcus epidermidis. Additionally, a commercial wound dressing coated with one of the synthesized CS-HCAF derivatives showed a significant reduction in the adhesion of S. epidermidis compared to the uncoated dressing (3-log reduction). The CS-HCAF derivatives also showed an interesting antioxidant property (EC50 ranging from 20 to 60 μg/mL), which further confirms the potentiality of these materials as wound dressings.

Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis / Amato, Andrea; Migneco, Luisa Maria; Martinelli, Andrea; Pietrelli, Loris; Piozzi, Antonella; Francolini, Iolanda. - In: CARBOHYDRATE POLYMERS. - ISSN 0144-8617. - 179:(2018), pp. 273-281. [10.1016/j.carbpol.2017.09.073]

Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis

Migneco, Luisa Maria;Martinelli, Andrea;Piozzi, Antonella;Francolini, Iolanda
2018

Abstract

Protein mussel-inspired adhesive polymers, characterized by the presence of catechol groups, possess superior muco-adhesive properties and have great potentiality in wound healing. Suitable materials for wound dressing should properly combine muco-adhesiveness and antimicrobial activity. In this work, catechol-functionalized chitosan was obtained by reaction with hydrocaffeic acid (HCAF), in order to investigate how catechol introduction at different content could affect the intrinsic antimicrobial activity of the polymer itself. Unexpectedly, an enhancement of chitosan antimicrobial activity was observed after catechol functionalization, with a fourfold reduction in the polymer minimum inhibitory concentration versus Staphylococcus epidermidis. Additionally, a commercial wound dressing coated with one of the synthesized CS-HCAF derivatives showed a significant reduction in the adhesion of S. epidermidis compared to the uncoated dressing (3-log reduction). The CS-HCAF derivatives also showed an interesting antioxidant property (EC50 ranging from 20 to 60 μg/mL), which further confirms the potentiality of these materials as wound dressings.
2018
Bioadhesive polymers; Chitosan; Hydrocaffeic acid; Protein mussels mimics polymers; Wound dressings; Organic Chemistry; Polymers and Plastics; Materials Chemistry2506 Metals and Alloys
01 Pubblicazione su rivista::01a Articolo in rivista
Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis / Amato, Andrea; Migneco, Luisa Maria; Martinelli, Andrea; Pietrelli, Loris; Piozzi, Antonella; Francolini, Iolanda. - In: CARBOHYDRATE POLYMERS. - ISSN 0144-8617. - 179:(2018), pp. 273-281. [10.1016/j.carbpol.2017.09.073]
File allegati a questo prodotto
File Dimensione Formato  
Amato_Antimicrobial-activity_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.11 MB
Formato Adobe PDF
4.11 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1076734
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 74
social impact