We study a cubic Dirac equation on $\mathbb{R}\times\mathbb{R}^{3}$ \begin{equation*} i \partial _t u + \D u + V(x) u = \langle \beta u,u \rangle \beta u \end{equation*} perturbed by a large potential with almost critical regularity. We prove global existence and scattering for small initial data in $H^{1}$ with additional angular regularity. The main tool is an endpoint Strichartz estimate for the perturbed Dirac flow. In particular, the result covers the case of spherically symmetric data with small $H^{1}$ norm. When the potential $V$ has a suitable structure, we prove global existence and scattering for \emph{large} initial data having a small chiral component, related to the Lochak--Majorana condition.
On the cubic Dirac equation with potential and the Lochak--Majorana condition / D'Ancona, Piero; Okamoto, Mamoru. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 1096-0813. - STAMPA. - 456:(2017), pp. 1203-1237. [10.1016/j.jmaa.2017.07.055]
On the cubic Dirac equation with potential and the Lochak--Majorana condition
D'ANCONA, PIERO
Investigation
;
2017
Abstract
We study a cubic Dirac equation on $\mathbb{R}\times\mathbb{R}^{3}$ \begin{equation*} i \partial _t u + \D u + V(x) u = \langle \beta u,u \rangle \beta u \end{equation*} perturbed by a large potential with almost critical regularity. We prove global existence and scattering for small initial data in $H^{1}$ with additional angular regularity. The main tool is an endpoint Strichartz estimate for the perturbed Dirac flow. In particular, the result covers the case of spherically symmetric data with small $H^{1}$ norm. When the potential $V$ has a suitable structure, we prove global existence and scattering for \emph{large} initial data having a small chiral component, related to the Lochak--Majorana condition.File | Dimensione | Formato | |
---|---|---|---|
Dancona_Cubic-Dirac_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
618.06 kB
Formato
Adobe PDF
|
618.06 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.