In this work, a loose reverse osmosis (RO) membrane (Osmonics AK model), capable of offering beforehand higher fluxes under lower operating pressure than typical tight reverse osmosis membranes but still offering similar rejection, was used for the final purification of olive mill wastewater. However, the output that a membrane may offer when it is virgin and readily used will change in time due to membrane fouling. If not properly considered, the advantages that a chosen membrane may offer in contrast with others would quickly and often irreversibly vanish, with the consequences in terms of capital expenses that this will represent. One approach to meet the investor's needs to trust membrane technology is to guarantee that fouling will be inhibited as much as possible, but to overcome the loss of performance that fouling carries engineers overdesign the membrane plants by using too wide safety margins that trigger the costs sensibly. Since the mechanisms by which fouling phenomena are triggered are always complex, the osmotic-pressure resistances-in-series model can be a simple but reliable model to describe the membrane response and predict its performance in time. In this context, the normalized fouling measured on the examined RO membrane was found to be minimum in the operating pressure range between 5 and 8 bar (0.65-0.98, respectively), and it decreased down to 0.51 upon increasing the crossflow up to 5.09 m s-1, avoiding irreversible fouling. Moreover, significantly minor fouling (0.33) was attained at the lowest temperature, regularly experienced during the olive oil production campaign. On another hand, the rejection towards organic solutes was maintained above 97%.
Analysis of fouling resistances under dynamic filtration of pretreated olive mill wastewater on a loose reverse osmosis membrane / Ochando-Pulido, Javier Miguel; Stoller, Marco; Martínez-Férez, Antonio. - In: CHEMICAL ENGINEERING TRANSACTIONS. - ISSN 2283-9216. - STAMPA. - 57:(2017), pp. 1177-1182. [10.3303/CET1757197]
Analysis of fouling resistances under dynamic filtration of pretreated olive mill wastewater on a loose reverse osmosis membrane
Stoller, Marco;
2017
Abstract
In this work, a loose reverse osmosis (RO) membrane (Osmonics AK model), capable of offering beforehand higher fluxes under lower operating pressure than typical tight reverse osmosis membranes but still offering similar rejection, was used for the final purification of olive mill wastewater. However, the output that a membrane may offer when it is virgin and readily used will change in time due to membrane fouling. If not properly considered, the advantages that a chosen membrane may offer in contrast with others would quickly and often irreversibly vanish, with the consequences in terms of capital expenses that this will represent. One approach to meet the investor's needs to trust membrane technology is to guarantee that fouling will be inhibited as much as possible, but to overcome the loss of performance that fouling carries engineers overdesign the membrane plants by using too wide safety margins that trigger the costs sensibly. Since the mechanisms by which fouling phenomena are triggered are always complex, the osmotic-pressure resistances-in-series model can be a simple but reliable model to describe the membrane response and predict its performance in time. In this context, the normalized fouling measured on the examined RO membrane was found to be minimum in the operating pressure range between 5 and 8 bar (0.65-0.98, respectively), and it decreased down to 0.51 upon increasing the crossflow up to 5.09 m s-1, avoiding irreversible fouling. Moreover, significantly minor fouling (0.33) was attained at the lowest temperature, regularly experienced during the olive oil production campaign. On another hand, the rejection towards organic solutes was maintained above 97%.File | Dimensione | Formato | |
---|---|---|---|
Ochando-Pulido_Analysis-fouling-resistances_2017.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
943.45 kB
Formato
Adobe PDF
|
943.45 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.