We construct families of positive solutions for competitive and cooperative systems which blow-up and concentrate at different points of the domain. This problem can be seen as a generalization for systems of a Brezis– Nirenberg type problem.

Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions / Pistoia, Angela; NABAIS TAVARES, HUGO RICARDO. - In: JOURNAL OF FIXED POINT THEORY AND ITS APPLICATIONS. - ISSN 1661-7738. - STAMPA. - 19:1(2017), pp. 407-446. [10.1007/s11784-016-0360-6]

Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions

Pistoia, Angela
;
NABAIS TAVARES, HUGO RICARDO
2017

Abstract

We construct families of positive solutions for competitive and cooperative systems which blow-up and concentrate at different points of the domain. This problem can be seen as a generalization for systems of a Brezis– Nirenberg type problem.
2017
Blowup and concentrating solutions; Brezis–Nirenberg type problems; Competitive and weakly cooperative systems; Critical Sobolev Exponent; Cubic Schrödinger systems; Lyapunov–Schmidt reduction; Modeling and Simulation; Geometry and Topology; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions / Pistoia, Angela; NABAIS TAVARES, HUGO RICARDO. - In: JOURNAL OF FIXED POINT THEORY AND ITS APPLICATIONS. - ISSN 1661-7738. - STAMPA. - 19:1(2017), pp. 407-446. [10.1007/s11784-016-0360-6]
File allegati a questo prodotto
File Dimensione Formato  
pita-jfpt2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 806.43 kB
Formato Adobe PDF
806.43 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1072834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact