Pseudomonas aeruginosa is a ubiquitous organism and opportunistic pathogen that can cause persistent infections due to its peculiar antibiotic resistance mechanisms and to its ability to adhere and form biofilm. The interest in the development of new approaches for the prevention and treatment of biofilm formation has recently increased. The aim of this study was to seek new non-biocidal agents able to inhibit biofilm formation, in order to counteract virulence rather than bacterial growth and avoid the selection of escape mutants. Herein, different essential oils extracted from Mediterranean plants were analyzed for their activity againstP. aeruginosa. Results show that they were able to destabilize biofilm at very low concentration without impairing bacterial viability. Since the action is not related to a bacteriostatic/bactericidal activity onP. aeruginosa, the biofilm change of growth in presence of the essential oils was possibly due to a modulation of the phenotype. To this aim, application of machine learning algorithms led to the development of quantitative activity-composition relationships classification models that allowed to direct point out those essential oil chemical components more involved in the inhibition of biofilm production. The action of selected essential oils on sessile phenotype make them particularly interesting for possible applications such as prevention of bacterial contamination in the community and in healthcare environments in order to prevent human infections. We assayed 89 samples of different essential oils asP. aeruginosaanti-biofilm. Many samples inhibitedP. aeruginosabiofilm at concentrations as low as 48.8 µg/mL. Classification of the models was developed through machine learning algorithms.

Antimicrobial and antibiofilm activity and machine learning classification analysis of essential oils from different mediterranean plants against pseudomonas aeruginosa / Artini, Marco; Patsilinakos, Alexandros; Papa, Rosanna; Božović, Mijat; Sabatino, Manuela; Garzoli, Stefania; Vrenna, Gianluca; Tilotta, Marco; Pepi, Federico; Ragno, Rino; Selan, Laura. - In: MOLECULES. - ISSN 1420-3049. - 23:2(2018). [10.3390/molecules23020482]

Antimicrobial and antibiofilm activity and machine learning classification analysis of essential oils from different mediterranean plants against pseudomonas aeruginosa

Artini, Marco;Patsilinakos, Alexandros;Papa, Rosanna;Božović, Mijat;Sabatino, Manuela;Garzoli, Stefania;VRENNA, GIANLUCA;Tilotta, Marco;Pepi, Federico;Ragno, Rino
;
Selan, Laura
2018

Abstract

Pseudomonas aeruginosa is a ubiquitous organism and opportunistic pathogen that can cause persistent infections due to its peculiar antibiotic resistance mechanisms and to its ability to adhere and form biofilm. The interest in the development of new approaches for the prevention and treatment of biofilm formation has recently increased. The aim of this study was to seek new non-biocidal agents able to inhibit biofilm formation, in order to counteract virulence rather than bacterial growth and avoid the selection of escape mutants. Herein, different essential oils extracted from Mediterranean plants were analyzed for their activity againstP. aeruginosa. Results show that they were able to destabilize biofilm at very low concentration without impairing bacterial viability. Since the action is not related to a bacteriostatic/bactericidal activity onP. aeruginosa, the biofilm change of growth in presence of the essential oils was possibly due to a modulation of the phenotype. To this aim, application of machine learning algorithms led to the development of quantitative activity-composition relationships classification models that allowed to direct point out those essential oil chemical components more involved in the inhibition of biofilm production. The action of selected essential oils on sessile phenotype make them particularly interesting for possible applications such as prevention of bacterial contamination in the community and in healthcare environments in order to prevent human infections. We assayed 89 samples of different essential oils asP. aeruginosaanti-biofilm. Many samples inhibitedP. aeruginosabiofilm at concentrations as low as 48.8 µg/mL. Classification of the models was developed through machine learning algorithms.
2018
pseudomonas aeruginosa; antibacterial; biofilm; essential oil; machine learning
01 Pubblicazione su rivista::01a Articolo in rivista
Antimicrobial and antibiofilm activity and machine learning classification analysis of essential oils from different mediterranean plants against pseudomonas aeruginosa / Artini, Marco; Patsilinakos, Alexandros; Papa, Rosanna; Božović, Mijat; Sabatino, Manuela; Garzoli, Stefania; Vrenna, Gianluca; Tilotta, Marco; Pepi, Federico; Ragno, Rino; Selan, Laura. - In: MOLECULES. - ISSN 1420-3049. - 23:2(2018). [10.3390/molecules23020482]
File allegati a questo prodotto
File Dimensione Formato  
Artini_Antimicrobial_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1072677
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 57
social impact