Attitude stabilization of spacecraft using magnetorquers can be achieved by a proportional–derivative-like control algorithm. The gains of this algorithm are usually determined by using a trial-and-error approach within the large search space of the possible values of the gains. However, when finding the gains in this manner, only a small portion of the search space is actually explored. We propose here an innovative and systematic approach for finding the gains: they should be those that minimize the settling time of the attitude error. However, the settling time depends also on initial conditions. Consequently, gains that minimize the settling time for specific initial conditions cannot guarantee the minimum settling time under different initial conditions. Initial conditions are not known in advance. We overcome this obstacle by formulating a min–max problem whose solution provides robust gains, which are gains that minimize the settling time under the worst initial conditions, thus producing good average behavior. An additional difficulty is that the settling time cannot be expressed in analytical form as a function of gains and initial conditions. Hence, our approach uses some derivative-free optimization algorithms as building blocks. These algorithms work without the need to write the objective function analytically: they only need to compute it at a number of points. Results obtained in a case study are very promising.
A robust optimization approach for magnetic spacecraft attitude stabilization / Bruni, Renato; Celani, Fabio. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 173:3(2017), pp. 994-1012. [10.1007/s10957-016-1035-6]
A robust optimization approach for magnetic spacecraft attitude stabilization
Bruni, Renato
;Celani, Fabio
2017
Abstract
Attitude stabilization of spacecraft using magnetorquers can be achieved by a proportional–derivative-like control algorithm. The gains of this algorithm are usually determined by using a trial-and-error approach within the large search space of the possible values of the gains. However, when finding the gains in this manner, only a small portion of the search space is actually explored. We propose here an innovative and systematic approach for finding the gains: they should be those that minimize the settling time of the attitude error. However, the settling time depends also on initial conditions. Consequently, gains that minimize the settling time for specific initial conditions cannot guarantee the minimum settling time under different initial conditions. Initial conditions are not known in advance. We overcome this obstacle by formulating a min–max problem whose solution provides robust gains, which are gains that minimize the settling time under the worst initial conditions, thus producing good average behavior. An additional difficulty is that the settling time cannot be expressed in analytical form as a function of gains and initial conditions. Hence, our approach uses some derivative-free optimization algorithms as building blocks. These algorithms work without the need to write the objective function analytically: they only need to compute it at a number of points. Results obtained in a case study are very promising.File | Dimensione | Formato | |
---|---|---|---|
bruni_postprint_robust-optimization_2017.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
634.91 kB
Formato
Adobe PDF
|
634.91 kB | Adobe PDF | |
Bruni_robust-optimization_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
806.26 kB
Formato
Adobe PDF
|
806.26 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.