This study concerns a thermodynamic and technical optimization of a small scale Organic Rankine Cycle system for waste heat recovery applications. An Artificial Neural Network (ANN) has been used to develop a thermodynamic model to be used for the maximization of the production of power while keeping the size of the heat exchangers and hence the cost of the plant at its minimum. R1234yf has been selected as the working fluid. The results show that the use of ANN is promising in solving complex nonlinear optimization problems that arise in the field of thermodynamics.

Neural networks for small scale ORC optimization / Massimiani, Alessandro; Palagi, Laura; Sciubba, Enrico; Tocci, Lorenzo. - In: ENERGY PROCEDIA. - ISSN 1876-6102. - STAMPA. - 129:(2017), pp. 34-41. (Intervento presentato al convegno 4th International Seminar on Organic Rankine Cycle (ORC) Power Systems, ORC 2017 tenutosi a Milano; Italy) [10.1016/j.egypro.2017.09.174].

Neural networks for small scale ORC optimization

Alessandro Massimiani;Laura Palagi;Enrico Sciubba;Lorenzo Tocci
2017

Abstract

This study concerns a thermodynamic and technical optimization of a small scale Organic Rankine Cycle system for waste heat recovery applications. An Artificial Neural Network (ANN) has been used to develop a thermodynamic model to be used for the maximization of the production of power while keeping the size of the heat exchangers and hence the cost of the plant at its minimum. R1234yf has been selected as the working fluid. The results show that the use of ANN is promising in solving complex nonlinear optimization problems that arise in the field of thermodynamics.
2017
4th International Seminar on Organic Rankine Cycle (ORC) Power Systems, ORC 2017
Small scale ORC; optimization; artificial neural networks
04 Pubblicazione in atti di convegno::04c Atto di convegno in rivista
Neural networks for small scale ORC optimization / Massimiani, Alessandro; Palagi, Laura; Sciubba, Enrico; Tocci, Lorenzo. - In: ENERGY PROCEDIA. - ISSN 1876-6102. - STAMPA. - 129:(2017), pp. 34-41. (Intervento presentato al convegno 4th International Seminar on Organic Rankine Cycle (ORC) Power Systems, ORC 2017 tenutosi a Milano; Italy) [10.1016/j.egypro.2017.09.174].
File allegati a questo prodotto
File Dimensione Formato  
Massimiani_Neural-networks_2017.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 603.9 kB
Formato Adobe PDF
603.9 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1071500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact