We improve by an exponential factor the lower bound of K¨orner and Muzi for the cardinality of the largest family of Hamilton paths in a complete graph of n vertices in which the union of any two paths has maximum degree 4. The improvement is through an explicit construction while the previous bound was obtained by a greedy algorithm. We solve a similar problem for permutations up to an exponential factor.

Families of locally separated Hamilton paths / Körner, János; Monti, Angelo. - In: JOURNAL OF GRAPH THEORY. - ISSN 0364-9024. - STAMPA. - (2018), pp. 402-410. [10.1002/jgt.22220]

Families of locally separated Hamilton paths

Körner, János;Monti, Angelo
2018

Abstract

We improve by an exponential factor the lower bound of K¨orner and Muzi for the cardinality of the largest family of Hamilton paths in a complete graph of n vertices in which the union of any two paths has maximum degree 4. The improvement is through an explicit construction while the previous bound was obtained by a greedy algorithm. We solve a similar problem for permutations up to an exponential factor.
2018
Graph-difference; Hamilton paths; Intersection problems; Permutations; Geometry and Topology
01 Pubblicazione su rivista::01a Articolo in rivista
Families of locally separated Hamilton paths / Körner, János; Monti, Angelo. - In: JOURNAL OF GRAPH THEORY. - ISSN 0364-9024. - STAMPA. - (2018), pp. 402-410. [10.1002/jgt.22220]
File allegati a questo prodotto
File Dimensione Formato  
Monti_postprint_Families_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 223.45 kB
Formato Adobe PDF
223.45 kB Adobe PDF
Monti_Families_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 168.89 kB
Formato Adobe PDF
168.89 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1071045
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact