Spontaneous Raman is a well-established tool to probe molecular vibrations. Under resonant conditions, it is a largely used method for characterizing the structure of heme-proteins. In recent years, advances in pulsed laser sources allowed to explore vibrational features with complex techniques based on non-linear optical interactions, among which is stimulated Raman scattering (SRS). Building on its combined spectral–temporal resolutions and high chemical sensitivities, SRS has been largely applied as a probe for ultrafast, time-resolved studies, as well as an imaging technique in biological systems. By using a frequency tunable, narrowband pump pulse jointly with a femtosecond white light continuum to initiate the SRS process, here we measure the Raman spectrum of a prototypical heme-protein, namely deoxy myoglobin, under two different electronic resonances. The SRS results are compared with the spontaneous Raman spectra, and the relative advantages, such as the capability of our experimental approach to provide an accurate mapping of Raman excitation profiles, are discussed.
Resonant broadband stimulated Raman scattering in myoglobin / Ferrante, C.; Batignani, G.; Fumero, G.; Pontecorvo, E.; Virga, Alessandra; Montemiglio, L. C.; Cerullo, G.; Vos, M. H.; Scopigno, T.. - In: JOURNAL OF RAMAN SPECTROSCOPY. - ISSN 0377-0486. - (2018), pp. ---. [10.1002/jrs.5323]
Resonant broadband stimulated Raman scattering in myoglobin
Ferrante, C.;Batignani, G.;Fumero, G.;Pontecorvo, E.;VIRGA, ALESSANDRA;Montemiglio, L. C.;Scopigno, T.
2018
Abstract
Spontaneous Raman is a well-established tool to probe molecular vibrations. Under resonant conditions, it is a largely used method for characterizing the structure of heme-proteins. In recent years, advances in pulsed laser sources allowed to explore vibrational features with complex techniques based on non-linear optical interactions, among which is stimulated Raman scattering (SRS). Building on its combined spectral–temporal resolutions and high chemical sensitivities, SRS has been largely applied as a probe for ultrafast, time-resolved studies, as well as an imaging technique in biological systems. By using a frequency tunable, narrowband pump pulse jointly with a femtosecond white light continuum to initiate the SRS process, here we measure the Raman spectrum of a prototypical heme-protein, namely deoxy myoglobin, under two different electronic resonances. The SRS results are compared with the spontaneous Raman spectra, and the relative advantages, such as the capability of our experimental approach to provide an accurate mapping of Raman excitation profiles, are discussed.File | Dimensione | Formato | |
---|---|---|---|
Ferrante_Resonant broadband_2018.pdf
solo gestori archivio
Note: articolo principale
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
629.53 kB
Formato
Adobe PDF
|
629.53 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.